Which expression is equivalent to (StartFraction 4 m n Over m Superscript negative 2 Baseline n Superscript 6 Baseline EndFraction) Superscript negative 2? Assume m not-equals 0, n not-equals 0. StartFraction n Superscript 6 Baseline Over 16 m Superscript 8 Baseline EndFraction StartFraction n Superscript 10 Baseline Over 16 m Superscript 6 Baseline EndFraction StartFraction n Superscript 10 Baseline Over 8 m Superscript 8 Baseline EndFraction StartFraction 4 m cubed Over n Superscript 8 Baseline EndFraction

Respuesta :

Question

Which expression is equivalent to [tex]\frac{4mn}{m^{-2}n^6}[/tex]. Assuming [tex]m \neq 0; n\neq 0[/tex]

Answer:

[tex]\frac{4m^3}{n^5}[/tex]

Step-by-step explanation:

Given

[tex]\frac{4mn}{m^{-2}n^6}[/tex]

Required:

Simplify

To simplify this, we start by splitting each individual function

[tex]\frac{4mn}{m^{-2}n^6} = \frac{4m}{m^{-2}} * \frac{n}{n^6}[/tex]

From laws of indices

[tex]\frac{a^x}{a^y} = a^{x-y}[/tex]

SO, the above expression can also be expressed the same way

[tex]\frac{4m}{m^{-2}} * \frac{n}{n^6} = 4m^{1-(-2)} * n^{1-6}[/tex]

[tex]\frac{4m}{m^{-2}} * \frac{n}{n^6} = 4m^{1+2)} * n^{1-6}[/tex]

[tex]\frac{4m}{m^{-2}} * \frac{n}{n^6} = 4m^{3} * n^{-5}[/tex]

From laws of indices,

[tex]a^{-x} = \frac{1}{a^x}[/tex]

So,

[tex]\frac{4m}{m^{-2}} * \frac{n}{n^6} = 4m^{3} * \frac{1}{n^5}[/tex]

[tex]\frac{4m}{m^{-2}} * \frac{n}{n^6} = \frac{4m^3}{n^5}[/tex]

Hence, [tex]\frac{4mn}{m^{-2}n^6}[/tex] is equivalent to [tex]\frac{4m^3}{n^5}[/tex]

Answer:

Option D on Edg

Step-by-step explanation:

Just did the test