Answer:
Translation energy of 1 mole of H2 molecules = KE x Avogadros number
[tex]= 1.923 * 10^{-26} * 6.022 * 10^{23}\\\\= 0.0116 J \\\\= 1.16 * 10^{-2} \ J[/tex]
Explanation:
Photon wavelength [tex]= 58.4 nm = 58.4 * 10^{-9} m[/tex]
Photon momentum = h/wavelength
[tex]= (6.626 * 10^{-34})/(58.4 * 10^{-9})\\\\ = 1.1346 * 10^{-26} \ kg.m/s[/tex]
Mass of H2 molecule m = molar mass/Avogadros number
[tex]= (2.016)/(6.022 * 10^{23})\\\\= 3.3477 * 10^{-24} \ g = 3.3477 * 10^{-27} \ kg[/tex]
Since momentum is conserved:
Photon momentum = H2 molecule momentum = mass x velocity of H2
[tex]1.1346 * 10^{-26} = 3.3477 * 10^{-27} * v[/tex]
velocity [tex]v = 3.389 m/s = 3.39 m/s[/tex]
Translation energy of 1 H2 molecule = kinectic energy (KE) = (1/2)mv^2
[tex]= 1/2 * 3.3477 * 10^{-27} * 3.389^2\\\\= 1.923 * 10^{-26} J[/tex]
Translation energy of 1 mole of H2 molecules = KE x Avogadros number
[tex]= 1.923 * 10^{-26} * 6.022 * 10^{23}\\\\= 0.0116 J \\\\= 1.16 * 10^{-2} \ J[/tex]