Near the top of the Citigroup Center building in New York City, there is an object with mass of 4.8 x 105 kg on springs that have adjustable force constants. Its function is to dampen wind-driven oscillations of the building by oscillating at the same frequency as the building is being driven-the driving force is transferred to the object, which oscillates instead of the entire building X 50%
Part (a) What effective force constant, in N/m, should the springs have to make them oscillate with a period of 1.2 s? k = 9.5 * 106 9500000 X Attempts Remain 50%
Part (b) What energy, in joules, is stored in the springs for a 1.6 m displacement from equilibrium?

Respuesta :

Answer:

The force constant is  [tex]k =1.316 *10^{7} \ N/m[/tex]

The energy stored in the spring is  [tex]E = 1.68 *10^{7} \ J[/tex]

Explanation:

From the question we are told that

   The mass of the object is  [tex]M = 4.8*10^{5} \ kg[/tex]

    The period is [tex]T = 1.2 \ s[/tex]

The period of the spring oscillation is  mathematically represented as

         [tex]T =2 \pi \sqrt{ \frac{M}{k}}[/tex]

where  k is the force constant

   So making k the subject

       [tex]k = \frac{4 \pi ^2 M }{T^2}[/tex]

substituting values

       [tex]k = \frac{4 (3.142) ^2 (4.8 *10^{5}) }{(1.2)^2}[/tex]

      [tex]k =1.316 *10^{7} \ N/m[/tex]

The energy stored in the spring is mathematically represented  as

       [tex]E = \frac{1}{2} k x^2[/tex]

Where x is the spring displacement which is given as

        [tex]x = 1.6 \ m[/tex]

substituting values

      [tex]E = \frac{1}{2} (1.316 *10^{7}) (1.6)^2[/tex]

       [tex]E = 1.68 *10^{7} \ J[/tex]