Answer:
The force constant is [tex]k =1.316 *10^{7} \ N/m[/tex]
The energy stored in the spring is [tex]E = 1.68 *10^{7} \ J[/tex]
Explanation:
From the question we are told that
The mass of the object is [tex]M = 4.8*10^{5} \ kg[/tex]
The period is [tex]T = 1.2 \ s[/tex]
The period of the spring oscillation is mathematically represented as
[tex]T =2 \pi \sqrt{ \frac{M}{k}}[/tex]
where k is the force constant
So making k the subject
[tex]k = \frac{4 \pi ^2 M }{T^2}[/tex]
substituting values
[tex]k = \frac{4 (3.142) ^2 (4.8 *10^{5}) }{(1.2)^2}[/tex]
[tex]k =1.316 *10^{7} \ N/m[/tex]
The energy stored in the spring is mathematically represented as
[tex]E = \frac{1}{2} k x^2[/tex]
Where x is the spring displacement which is given as
[tex]x = 1.6 \ m[/tex]
substituting values
[tex]E = \frac{1}{2} (1.316 *10^{7}) (1.6)^2[/tex]
[tex]E = 1.68 *10^{7} \ J[/tex]