In a video game an object represented by the point (2,7) is rotated counterclockwise 175 degrees around an origin. What are the new coordinates that represent the point?

Respuesta :

Answer:

  (-2.60, -6.80)

Step-by-step explanation:

The new coordinates can be found by multiplying by the rotation matrix:

  [tex]\left[\begin{array}{c}x'&y'\end{array}\right]=\left[\begin{array}{cc}\cos{\theta}&-\sin{\theta}\\\sin{\theta}&\cos{\theta}\end{array}\right]\left[\begin{array}{c}x&y\end{array}\right][/tex]

That is, ...

  x' = x·cos(175°) -y·sin(175°) = 2(-0.9962) -7(0.0872) = -2.60

  y' = x·sin(175°) +y·cos(175°) = 2(0.0872) +7(-0.9962) = -6.80

The new coordinates are ...

  (x', y') = (-2.60, -6.80)