Answer:
Step-by-step explanation:
1) The given inequality is
[tex]|\sqrt{n} \frac{(\bar R_n-p)}{\sqrt{p(1-p)} } |<q_{\alpha /2}| \\\\ \to(\frac{(\sqrt{n} \bar R_n-p)}{\sqrt{p(1-p)} })<q^2_{\alpha /2}[/tex]
[tex]\to n( \bar R _n - p)^2<p(1-p)q^2_{\alpha /2}[/tex]
[tex]\to n\bar R +np^2-2nR_np<q^2_{\alpha /2 p- q^2_{\alpha /2}p^2[/tex]
Arranging the terms with p² and p, we get
[tex]p^2(n+q^2_{\alpha /2)-p(2n \bar R _n+q^2_{\alpha / 2})+n \bar R ^2 _n <0[/tex]
Hence, the inequality is of the form
Ap² + Bp + c < 0
2. A quadratic equation of the form
Ap² + Bp + c < 0 with A > 0 looks like
Check the attached image
The region where the values are negative lies between p₁ and p₂ ...
The p₁ < p < p₂