Answer:
Explanation:
D ( diameter ) = 125 m
convection coefficient of h = 700 W/m^2
Calculate THE CROSS SECTIONAL AREA
Ac = [tex]\frac{\pi }{4} * D^2[/tex] = [tex]\frac{\pi }{4} * ( 125 )^2[/tex] = 0.79 * 15625 = 12343.75 m^2
perimeter
p = [tex]\pi * D[/tex] = 3.14 * 125 = 392.5 m
at 300k temperature the thermal conductivity of copper and constantan from the thermodynamic property table are :
Kcu = 401 w/m.k
Kconstantan = 23 W/m.k
To calculate the length of copper wire of the thermocouple junction
L 1 = 4.6 ([tex]\frac{Kcv Ac}{h P}[/tex]) ^ 1/2 = 4.6 [tex](\frac{401 *12343.75 }{700 *392.5})^\frac{1}{2}[/tex]
L 1 = 4.6 ( 4949843.75 / 274750 )^1/2
L 1 = 9.48 m
calculate length of constantan wire
L 2 = 4.6 [tex](\frac{kcons*Ac}{hp} )^\frac{1}{2}[/tex]
= 4.6 ( (23 * 12343.75) / ( 700 * 392.5) ) ^1/2
L 2 = 4.6 ( 283906.25 / 274750 ) ^ 1/2
L 2 = 4.68 m
I) therefore the minimum separation distance between the two legs of the sting L = L 1 + L 2
L = 9.48 + 4.68 = 14.16 m
ii) Evaluating the thermal conductivity of copper and constantan
Kc ( thermal conductivity of chromel) = 19 w/m.k
Ka ( thermal conductivity of alumel ) = 29 W/m.k
distance between the legs L = L 1 + L 2
THEREFORE
L = 4.6 ( (Kcn * Ac ) / ( hp ) )^1/2 + 4.6 ( (Kac * Ac)/(hp) )^1/2
L = 4.6 [tex](\frac{Ac}{hp} )^\frac{1}{2} [ (Kcn)^\frac{1}{2} + (Kal)^\frac{1}{2} ][/tex]
L = 4.6 ( 12343.75 /( 700 * 392.5) )^1/2 * [ 19^1/2 + 29^1/2 ]
L = 4.6 ( 12343.75 / 274750 ) ^1/2 * 5.39
L = 1.14 m