Respuesta :

Answer:

a) The value of absolute minimum value = - 0.3536  

b) which is attained at   [tex]x = \frac{1}{\sqrt{2} }[/tex]  

Step-by-step explanation:

Step(i):-

Given function

                       [tex]f(x) = \frac{-x}{2x^{2} +1}[/tex]     ...(i)

Differentiating equation (i) with respective to 'x'

                     [tex]f^{l} = \frac{2x^{2} +1(-1) - (-x) (4x)}{(2x^{2}+1)^{2} }[/tex]   ...(ii)

                    [tex]f^{l}(x) = \frac{2x^{2}-1}{(2x^{2}+1)^{2} }[/tex]

Equating Zero

                   [tex]f^{l}(x) = \frac{2x^{2}-1}{(2x^{2}+1)^{2} } = 0[/tex]

                 [tex]\frac{2x^{2}-1}{(2x^{2}+1)^{2} } = 0[/tex]

                [tex]2 x^{2}-1 = 0[/tex]

               [tex]2 x^{2} = 1[/tex]

             [tex]x^{2} = \frac{1}{2}[/tex]

             [tex]x = \frac{-1}{\sqrt{2} } , x = \frac{1}{\sqrt{2} }[/tex]

Step(ii):-

Again Differentiating equation (ii) with respective to 'x'

[tex]f^{ll}(x) = \frac{(2x^{2} +1)^{2} (4x) - 2(2x^{2} +1) (4x)(2x^{2}-1) }{(2x^{2}+1)^{4} }[/tex]

put

      [tex]x = \frac{1}{\sqrt{2} }[/tex]

[tex]f^{ll} (x) > 0[/tex]

The absolute minimum value at   [tex]x = \frac{1}{\sqrt{2} }[/tex]

Step(iii):-

The value of absolute minimum value

                         [tex]f(x) = \frac{-x}{2x^{2} +1}[/tex]

                       [tex]f(\frac{1}{\sqrt{2} } ) = \frac{-\frac{1}{\sqrt{2} } }{2(\frac{1}{\sqrt{2} } )^{2} +1}[/tex]

         on calculation we get

The value of absolute minimum value = - 0.3536      

Final answer:-

a) The value of absolute minimum value = - 0.3536  

b) which is attained at   [tex]x = \frac{1}{\sqrt{2} }[/tex]