Respuesta :
Answer:
[tex]\fbox{\begin{minipage}{11em}(f - g)(x) = -2x(2x - 5)\end{minipage}}[/tex]
Step-by-step explanation:
Given:
[tex]f(x) = -x^{2} + 6x - 1 \\ g(x) = 3x^{2} - 4x - 1\\[/tex]
Solve for:
[tex](f - g)(x)[/tex]
Solution:
Perform the subtraction:
[tex](f - g)(x) = (-x^{2} + 6x - 1) - (3x^{2} - 4x - 1)[/tex]
Eliminate the parenthesis (notice the change in sign of some components):
[tex](f - g)(x) = -x^{2} + 6x - 1 - 3x^{2} + 4x + 1[/tex]
Rearrange the expression:
[tex](f - g)(x) = (-x^{2} - 3x^{2}) + (6x + 4x) + (1 - 1)[/tex]
Simplify the expression:
[tex](f - g)(x) = -4x^{2} + 10x[/tex]
Perform the inverse of associative property:
[tex](f - g)(x) = -2x(2x - 5)[/tex]
Hope this helps!
:)