Respuesta :

Answer:

Step-by-step explanation:

- 4x² + 10x

Answer:

[tex]\fbox{\begin{minipage}{11em}(f - g)(x) = -2x(2x - 5)\end{minipage}}[/tex]

Step-by-step explanation:

Given:

[tex]f(x) = -x^{2} + 6x - 1 \\ g(x) = 3x^{2} - 4x - 1\\[/tex]

Solve for:

[tex](f - g)(x)[/tex]

Solution:

Perform the subtraction:

[tex](f - g)(x) = (-x^{2} + 6x - 1) - (3x^{2} - 4x - 1)[/tex]

Eliminate the parenthesis (notice the change in sign of some components):

[tex](f - g)(x) = -x^{2} + 6x - 1 - 3x^{2} + 4x + 1[/tex]

Rearrange the expression:

[tex](f - g)(x) = (-x^{2} - 3x^{2}) + (6x + 4x) + (1 - 1)[/tex]

Simplify the expression:

[tex](f - g)(x) = -4x^{2} + 10x[/tex]

Perform the inverse of associative property:

[tex](f - g)(x) = -2x(2x - 5)[/tex]

Hope this helps!

:)