A rectangular piece of paper has a width that is 3 inches less than its length. It is cut in half along a diagonal to create two congruent right triangles with areas of 44 square inches. Which statements are true? Check all that apply.

The area of the rectangle is 88 square inches.
The equation x(x – 3) = 44 can be used to solve for the dimensions of the triangle.
The equation x2 – 3x – 88 = 0 can be used to solve for the length of the rectangle.
The triangle has a base of 11 inches and a height of 8 inches.
The rectangle has a width of 4 inches.

Respuesta :

Answer:

⬇⬇⬇⬇⬇⬇

⬇⬇⬇⬇⬇⬇

Step-by-step explanation:

1, 3, 4

proof below

Ver imagen Аноним

(1) The area of the rectangle is 88 square inches

(3) The equation x² – 3x – 88 = 0 can be used to solve for the length of the rectangle.

(4) The triangle has a base of 11 inches and a height of 8 inches.

Area of the rectangle

Area of a rectangle is the sum of the area of two equal right triangle.

Area of rectangle = 2(area of right triangle)

Area of rectangle = 2(44 sq inches) = 88 sq inches

Total area of the triangle with respect to length and width of the rectangle

Let the length = x

then the width becomes, x - 3

Area = x(x - 3) = 88

x² - 3x = 88

x² - 3x - 88 = 0

x = 11

width = 11 - 3 = 8

Thus, the statements that are true include;

  • The area of the rectangle is 88 square inches
  • The equation x² – 3x – 88 = 0 can be used to solve for the length of the rectangle.
  • The triangle has a base of 11 inches and a height of 8 inches.

Learn more about area of rectangle here: https://brainly.com/question/25292087

#SPJ9