Claim: The mean pulse rate​ (in beats per​ minute) of adult males is equal to 69.3 bpm. For a random sample of 140 adult​ males, the mean pulse rate is 69.8 bpm and the standard deviation is 11.2 bpm. Complete parts​ (a) and​ (b) below.

a. Express the original claim in symbolic form.
_,_,bpm

Respuesta :

Answer:

Part a

Null hypothesis: [tex] \mu = 69.3[/tex]

Alternative hypothesis: [tex]\mu \neq 69.3[/tex]

Part b

[tex] z = \frac{69.8- 69.3}{\frac{11.2}{\sqrt{140}}}= 0.528[/tex]

Step-by-step explanation:

For this case we have the following info given :

[tex] \bar X = 69.8[/tex] the sample mean

[tex] n= 140[/tex] represent the sample size

[tex] s = 11.2[/tex] represent the standard deviation

Part a

And we want to test if the true mean is equal to 69.3 so then the system of hypothesis:

Null hypothesis: [tex] \mu = 69.3[/tex]

Alternative hypothesis: [tex]\mu \neq 69.3[/tex]

Part b: Find the statistic

The statistic is given by:

[tex] z= \frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

And replacing the info we got:

[tex] z = \frac{69.8- 69.3}{\frac{11.2}{\sqrt{140}}}= 0.528[/tex]