Given: f(x) = 2x + 5 and g(x) = x2 and h(x) = -2X
h(g(x))) =
[X²+
X+

Answer:
- 8x² - 40x - 50
Step-by-step explanation:
Begin by evaluating the inside, that is g(f(x))
Substitute x = f(x) into g(x), that is
g(f(x))
= g(2x + 5)
= (2x + 5)² ← expand using FOIL
= 4x² + 20x + 25
Now substitute x = 4x² + 20x + 25 into h(x)
h(4x² + 20x + 25)
= - 2(4x² + 20x + 25) ← distribute parenthesis by - 2
= - 8x² - 40x - 50
Thus
h(g(f(x))) = - 8x² - 40x - 50