Respuesta :

Answer:

The satisfied table of the given function[tex]y = log_{b} (x)[/tex]

x                    1/8            1/4             1/2              1             2

y                    -3                 -2            -1               0               1

Step-by-step explanation:

Explanation :-

Given logarithmic function [tex]y = log_{b} (x)[/tex]   if b >1

Given first table

i)

put x = [tex]\frac{1}{8}[/tex]     given b > 1 so we can choose b = 2

[tex]y = log_{2} (\frac{1}{8} )[/tex]

[tex]y = log_{2} (2^{-3} )[/tex]

we will apply logarithmic formula

log x ⁿ = n log (x)

[tex]y = log_{2} (2^{-3} ) = -3 log_{2} (2) = -3 (1) = -3[/tex]

y = -3

ii)

put x = [tex]\frac{1}{4}[/tex]     given b > 1 so we can choose b = 2

[tex]y = log_{2} (\frac{1}{4} )[/tex]

[tex]y = log_{2} (2^{-2} )[/tex]

we will apply logarithmic formula

log x ⁿ = n log (x)

[tex]y = log_{2} (2^{-2} ) = -2 log_{2} (2) = -2 (1) = -2[/tex]

y = -2

iii)

put x = [tex]\frac{1}{2}[/tex]     given b > 1 so we can choose b = 2

[tex]y = log_{2} (\frac{1}{2} )[/tex]

[tex]y = log_{2} (2^{-1} )[/tex]

we will apply logarithmic formula

log x ⁿ = n log (x)

[tex]y = log_{2} (2^{-1} ) = -1 log_{2} (2) = - (1) = -1[/tex]

y = -1

iv)

put x = 1     given b > 1 so we can choose b = 2

[tex]y = log_{2} (1 )[/tex] = 0

y = 0

v)

put x = [tex]2[/tex]     given b > 1 so we can choose b = 2

[tex]y = log_{2} (2 )[/tex]

y = 1

Final answer:-

The satisfied table of the given function

x                    1/8            1/4             1/2              1             2

y                    -3                 -2            -1               0               1

The first option is correct because that table of values represents the graph of a logarithmic function in the form [tex]y=\log_b x,b>1[/tex].

Given:

The lograrithmic function form is [tex]y=\log_b x,b>1[/tex].

To find:

The table of values that represents the graph of a logarithmic function in the form [tex]y=\log_b x,b>1[/tex].

Explanation:

It is given that [tex]b>1[/tex]. Let [tex]b=2[/tex], then

[tex]y=\log_2 x[/tex]          ...(i)

Substitute [tex]x=\dfrac{1}{8}[/tex] in (i), we get

[tex]y=\log_2 \dfrac{1}{8}[/tex]

[tex]y=\log_2 \dfrac{1}{2^3}[/tex]

[tex]y=\log_2 2^{-3}[/tex]

[tex]y=-3[/tex]

Substitute [tex]x=\dfrac{1}{4}[/tex] in (i), we get

[tex]y=\log_2 \dfrac{1}{4}[/tex]

[tex]y=\log_2 \dfrac{1}{2^2}[/tex]

[tex]y=\log_2 2^{-2}[/tex]

[tex]y=-2[/tex]

Substitute [tex]x=\dfrac{1}{2}[/tex] in (i), we get

[tex]y=\log_2 \dfrac{1}{2}[/tex]

[tex]y=\log_2 2^{-1}[/tex]

[tex]y=-1[/tex]

Substitute [tex]x=1[/tex] in (i), we get

[tex]y=\log_2 1[/tex]

[tex]y=0[/tex]

Substitute [tex]x=2[/tex] in (i), we get

[tex]y=\log_2 2[/tex]

[tex]y=1[/tex]

The table of values is:

[tex]x[/tex]     [tex]y[/tex]

[tex]\dfrac{1}{8}[/tex]     [tex]-3[/tex]

[tex]\dfrac{1}{4}[/tex]     [tex]-2[/tex]

[tex]\dfrac{1}{2}[/tex]     [tex]-1[/tex]

[tex]1[/tex]     [tex]0[/tex]

[tex]2[/tex]     [tex]1[/tex]

Therefore, the first option is correct.

Learn more:

https://brainly.com/question/7975040

Ver imagen erinna