Some shrubs have the useful ability to resprout from their roots after their tops are destroyed. Fire is a particular threat to shrubs in dry climates, as it can injure the roots as well as destroy the aboveground material. One study of resprouting took place in a dry area of Mexico. The investigation clipped the tops of samples of several species of shrubs. In some cases, they also applied a propane torch to the stumps to simulate a fire. Of 18 specimens of a particular species, 5 resprouted after fire. Estimate with 99.5% confidence the proportion of all shrubs of this species that will resprout after fire.

Respuesta :

Answer:

The 99.5% confidence interval for the proportion of all shrubs of this species that will resprout after fire is (0, 0.5745).

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

For this problem, we have that:

[tex]n = 18, \pi = \frac{5}{18} = 0.2778[/tex]

99.5% confidence level

So [tex]\alpha = 0.005[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.005}{2} = 0.9975[/tex], so [tex]Z = 2.81[/tex].  

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.2778 - 2.81\sqrt{\frac{0.2778*0.7222}{18}} = -0.01 = 0[/tex]

We cannot have a negative proportion, so we use 0.

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.2778 + 2.81\sqrt{\frac{0.2778*0.7222}{18}} = 0.5745[/tex]

The 99.5% confidence interval for the proportion of all shrubs of this species that will resprout after fire is (0, 0.5745).