contestada

A cantilever beam with a width b=100 mm and depth h=150 mm has a length L=2 m and is subjected to a point load P =500 N at B. Calculate the state of plane stress at point C located 50 mm below the top of the beam and 0.5 m to the right of point A. Also find the principal stresses and the maximum shear stress at C. Neglect the weight of the beam.

Respuesta :

Answer:

Explanation:

Given that:

width b=100mm

depth h=150 mm

length L=2 m =200mm

point load P =500 N

Calculate moment of inertia

[tex]I=\frac{bh^3}{12} \\\\=\frac{100 \times 150^3}{12} \\\\=28125000\ m m^4[/tex]

Point C is subjected to bending moment

Calculate the bending moment of point C

M = P x 1.5

= 500 x 1.5

= 750 N.m

M = 750 × 10³ N.mm

Calculate bending stress at point C

[tex]\sigma=\frac{M.y}{I} \\\\=\frac{(750\times10^3)(25)}{28125000} \\\\=0.0667 \ MPa\\\\ \sigma =666.67\ kPa[/tex]

Calculate the first moment of area below point C

[tex]Q=A \bar y\\\\=(50 \times 100)(25 +\frac{50}{2} )\\\\Q=250000\ mm[/tex]

Now calculate shear stress at point C

[tex]=\frac{FQ}{It}[/tex]

[tex]=\frac{500*250000}{28125000*100} \\\\=0.0444\ MPa\\\\=44.4\ KPa[/tex]

Calculate the principal stress at point C

[tex]\sigma_{1,2}=\frac{\sigma_x+\sigma_y}{2} \pm\sqrt{(\frac{\sigma_x-\sigma_y}{2} ) + (\tau)^2} \\\\=\frac{666.67+0}{2} \pm\sqrt{(\frac{666.67-0}{2} )^2 \pm(44.44)^2} \ [ \sigma_y=0]\\\\=333.33\pm336.28\\\\ \sigma_1=333.33+336.28\\=669.61KPa\\\\\sigma_2=333.33-336.28\\=-2.95KPa[/tex]

Calculate the maximum shear stress at piont C

[tex]\tau=\frac{\sigma_1-\sigma_2}{2}\\\\=\frac{669.61-(-2.95)}{2} \\\\=336.28KPa[/tex]

Ver imagen shallomisaiah19
Ver imagen shallomisaiah19