Aqueous sulfuric acid H2SO4 will react with solid sodium hydroxide NaOH to produce aqueous sodium sulfate Na2SO4 and liquid water H2O. Suppose 62. g of sulfuric acid is mixed with 33.8 g of sodium hydroxide. Calculate the minimum mass of sulfuric acid that could be left over by the chemical reaction. Round your answer to 2 significant digits.

Respuesta :

Answer:

Approximately [tex]21\; \rm g[/tex].

Explanation:

[tex]\rm H_2SO_4[/tex] (a diprotic acid) reacts with [tex]\rm NaOH[/tex] (a monoprotic base) at a one-to-two ratio:

[tex]\rm 2\; NaOH\, (s) + H_2SO_4\, (aq) \to Na_2SO_4\; (aq) + 2\; H_2O\, (l)[/tex].

In other words, if [tex]n(\mathrm{NaOH})[/tex] and [tex]n(\mathrm{H_2SO_4})[/tex] represent the number of moles of the two compounds reacted, then:

[tex]\displaystyle \frac{n(\mathrm{H_2SO_4})}{n(\mathrm{NaOH})} = \frac{1}{2}[/tex].

Look up the relative atomic mass data on a modern periodic table:

  • [tex]\rm H[/tex]: [tex]1.008[/tex].
  • [tex]\rm S[/tex]: [tex]32.06[/tex].
  • [tex]\rm O[/tex]: [tex]15.999[/tex].
  • [tex]\rm Na[/tex]: [tex]22.990[/tex].

Calculate the (molar) formula mass of [tex]\rm H_2SO_4[/tex] and [tex]\rm NaOH[/tex]:

[tex]M(\mathrm{H_2SO_4}) = 2 \times 1.008 + 32.06 + 4 \times 15.999 = 98.072\; \rm g \cdot mol^{-1}[/tex].

[tex]M(\mathrm{NaOH}) = 22.990 + 15.999 + 1.008 = 39.997\; \rm g \cdot mol^{-1}[/tex].

Calculate the number of moles of formula units in that [tex]33.8\; \rm g[/tex] of [tex]\rm NaOH[/tex]:

[tex]\begin{aligned}n(\mathrm{NaOH}) &= \frac{m(\mathrm{NaOH})}{M(\mathrm{NaOH})} \\ &= \frac{33.8\; \rm g}{39.997\; \rm g \cdot mol^{-1}} \approx 0.845\; \rm mol\end{aligned}[/tex].

Apply the ratio [tex]\displaystyle \frac{n(\mathrm{H_2SO_4})}{n(\mathrm{NaOH})} = \frac{1}{2}[/tex] to find the (maximum) number of moles of [tex]\rm H_2SO_4[/tex] that would react with the [tex]33.8\; \rm g[/tex] of [tex]\rm NaOH[/tex]:

[tex]\begin{aligned}n(\mathrm{H_2SO_4}) &= \frac{n(\mathrm{H_2SO_4})}{n(\mathrm{NaOH})} \cdot n(\mathrm{NaOH})\\ &= \frac{1}{2} \times 0.845 \approx 0.4225\; \rm mol\end{aligned}[/tex].

Calculate the mass of that [tex]0.4225\; \rm mol[/tex] of [tex]\rm H_2SO_4[/tex]:

[tex]\begin{aligned}m(\mathrm{H_2SO_4}) &= n(\mathrm{H_2SO_4}) \cdot M(\mathrm{H_2SO_4})\\ &= 0.4225 \; \rm mol \times 98.072\; \rm g \cdot mol^{-1} \approx 41.435\; \rm g \end{aligned}[/tex].

When the maximum amount of [tex]\rm H_2SO_4[/tex] is reacted, the minimum would be in excess. Hence, the minimum mass of

[tex]62\; \rm g - 41.435\; \rm g \approx 21\; \rm g[/tex] (rounded to two significant figures.)