Using the following balanced chemical equation 8 H2 + S8à 8 H2S. Determine the mass of the product (molar mass = 34.08g/mol) if you start with 1.35 g of hydrogen and 6.86 g of S8 (Molar mass = 256.5 g/mole).

Respuesta :

Answer: 7.29 g of [tex]H_2S[/tex] will be produced from the given masses of both reactants.

Explanation:

To calculate the moles :

[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]    

[tex]{\text{Moles of} H_2}=\frac{1.35g}{2.01g/mol}=0.672moles[/tex]

[tex]\text{Moles of} S_8=\frac{6.86g}{256.5g/mol}=0.0267moles[/tex]

[tex]8H_2+S_8\rightarrow 8H_2S[/tex]

According to stoichiometry :

1 mole of [tex]S_8[/tex] require = 8 moles of [tex]H_2[/tex]

Thus 0.0267 moles of [tex]S_8[/tex] will require=[tex]\frac{8}{1}\times 0.0267=0.214moles[/tex]  of [tex]H_2[/tex]

Thus [tex]S_8[/tex] is the limiting reagent as it limits the formation of product and [tex]H_2[/tex] is the excess reagent.

As 1 mole of [tex]S_8[/tex] give = 8 moles of [tex]H_2S[/tex]

Thus 0.0267 moles of [tex]S_8[/tex] give =[tex]\frac{8}{1}\times 0.0267=0.214moles[/tex]  of [tex]H_2S[/tex]

Mass of [tex]H_2S=moles\times {\text {Molar mass}}=0.214moles\times 34.08g/mol=7.29g[/tex]

Thus 7.29 g of [tex]H_2S[/tex] will be produced from the given masses of both reactants.