Respuesta :
Answer:
1,45 cubic units
Step-by-step explanation:
The method of cylindrical shells demands that the volume of the solid is given by:
[tex]V=2\pi\int_a^b xf(x)dx[/tex] (1)
In this case you have that f(x) is:
[tex]f(x)=cos(\frac{\pi}{2}x)[/tex]
a = 0
b = 1
First, you solve the integral, by parts:
[tex]\int xf(x)dx=\int xcos(\frac{\pi}{2}x)dx=x(\frac{2}{\pi})sin(\frac{\pi}{2}x)-\int (\frac{2}{\pi})sin(\frac{\pi}{2}x)dx\\\\=(\frac{2}{\pi})xsin(\frac{\pi}{2}x)+(\frac{2}{\pi})^2cos(\frac{\pi}{2}x)+C[/tex]
Next, you calculate the volume of the solid, by replacing the solution to the integral in the equation (1):
[tex]V=2\pi[(\frac{2}{\pi})xsin(\frac{\pi}{2}x)+(\frac{2}{\pi})^2cos(\frac{\pi}{2}x)]_0^1\\\\V=2\pi[(\frac{2}{\pi})-(\frac{2}{\pi})^2]=1,45u^3[/tex]
hence, the volume of the solid generated is 1,45 cubic units