Answer:
The demand function in terms of cost is [tex]D(c) = [\frac{[40c- 100 -4c^2 \ ])}{116} ] + 200[/tex]
Step-by-step explanation:
From the question we are told that
The demand for a certain brand of a product is
[tex]D(p) = \frac{-p^2}{116} + 200 ----(1)[/tex]
The price, in terms of the cost c, is expressed as
[tex]p(c) = 2c -6 -----(2)[/tex]
Now substituting equation 2 into equation 1
So
[tex]D(c) = - [\frac{(2c -10 )^2)}{116} ] + 200[/tex]
[tex]D(c) = - [\frac{[4c^2 + 100 -40c \ ])}{116} ] + 200[/tex]
[tex]D(c) = [\frac{[40c- 100 -4c^2 \ ])}{116} ] + 200[/tex]