Respuesta :
Answer:
s = [tex]\frac{v^2-u^2}{2a}[/tex]
Step-by-step explanation:
Given
v² = u² + 2as ( subtract u² from both sides )
v² - u² = 2as ( divide both sides by 2a )
[tex]\frac{v^2-u^2}{2a}[/tex] = s
Given
v² = u² + 2as ( subtract 2as from both sides )
v² - 2as = u² ( take the square root of both sides )
± [tex]\sqrt{v^2-2as}[/tex] = u
Answer:
[tex] \boxed{u = \pm \sqrt{ {v}^{2} - 2as}} [/tex]
[tex] \boxed{s = \frac{ {v}^{2} - {u}^{2} }{2a}} [/tex]
Step-by-step explanation:
•Making u subject for formula v² = u² + 2as:
[tex]Solve \: for \: u: \\ = > {v}^{2} = {u}^{2} +2as \\ \\ {v}^{2} = {u}^{2} + 2as \: is \: equivalent \: to \: {u}^{2} + 2as = {v}^{2} : \\ = > {u}^{2} + 2as = {v}^{2} \\ \\ Subtract \: 2as \: from \: both \: sides: \\ {u}^{2} = {v}^{2} - 2as \\ \\ Take \: the \: square \: root \: of \: both \: sides: \\ = > u= \sqrt{ {v}^{2} - 2as } \: \: \: \: or \: \: \: \: u=- \sqrt{ {v}^{2} - 2as} \\ u = \pm \sqrt{ {v}^{2} - 2as} [/tex]
•Making s subject for formula v² = u² + 2as:
[tex]Solve \: for \: s: \\ = > {v}^{2} =2as+ {u}^{2} \\ \\ {v}^{2} =2as+ {u}^{2} is equivalent to 2as+ {u}^{2} = {v}^{2}: = > 2as+ {u}^{2} = {v}^{2} \\ \\ Subtract \: {u}^{2} \: from \: both \: sides: \\ = > 2as= {v}^{2} - {u}^{2} \\ \\ Divide \: both \: sides \: by \: 2 a: \\ = > s = \frac{ {v}^{2} }{2a} - \frac{ {u}^{2} }{2a} \\ = > s = \frac{ {v}^{2} - {u}^{2} }{2a} [/tex]