Respuesta :

Answer:

r = √( s/4π)

Step-by-step explanation:

s = 4πr²

s/4π = 4πr²/4π

r² = s/4π

√(r²) =+/-√( s/4π)

r = √( s/4π)     Because r is a radius of the circle , it should be positive.

Answer:

[tex] \boxed{r = \pm \frac{ \sqrt{s} }{2 \sqrt{\pi} } } [/tex]

Step-by-step explanation:

[tex]Solve \: for \: r: \\ = > s=4\pi {r}^{2} \\ \\ s =4\pi {r}^{2} \: is \: equivalent \: to \: 4\pi {r}^{2} = s: \\ = > 4\pi {r}^{2} =s \\ \\ Divide \: both \: sides \: by \: 4\pi: \\ {r}^{2} = \frac{s}{4\pi} \\ \\ Take \: the \: square \: root \: of \: both \: sides: \\ = > r = \frac{ \sqrt{s} }{2 \sqrt{\pi} } \: \: \: \: or \: \: \: \: r = - \frac{ \sqrt{s} }{2 \sqrt{\pi} }

[/tex]