The set of points (-3, 4), (-1, 1), (-3,-2), and (-5,1) identifies the vertices of a quadrilateral. Which is the most specific description to tell which figure the points form?
parallelogram
please help

The set of points 3 4 1 1 32 and 51 identifies the vertices of a quadrilateral Which is the most specific description to tell which figure the points formparall class=

Respuesta :

Answer:

Option (4). Rhombus

Step-by-step explanation:

From the figure attached,

Distance AB = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}[/tex]

                     = [tex]\sqrt{(1-4)^2+(-5+3)^2}[/tex]

                     = [tex]\sqrt{(-3)^2+(-2)^2}[/tex]

                     = [tex]\sqrt{13}[/tex]

Distance BC = [tex]\sqrt{(4-1)^2+(-3+1)^2}[/tex]

                     = [tex]\sqrt{9+4}[/tex]

                     = [tex]\sqrt{13}[/tex]

Distance CD = [tex]\sqrt{(-2-1)^2+(-3+1)^2}[/tex]

                     = [tex]\sqrt{9+4}[/tex]

                     = [tex]\sqrt{13}[/tex]

Distance AD = [tex]\sqrt{(1+2)^2+(-5+3)^2}[/tex]

                     = [tex]\sqrt{9+4}[/tex]

                     = [tex]\sqrt{13}[/tex]

Slope of AB ([tex]m_{1}[/tex]) = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

                           = [tex]\frac{4-1}{-3+5}[/tex]

                           = [tex]\frac{3}{2}[/tex]

Slope of BC ([tex]m_{2}[/tex]) = [tex]\frac{4-1}{-3+1}[/tex]

                            = [tex]-\frac{3}{2}[/tex]

If AB and BC are perpendicular then,

[tex]m_{1}\times m_{2}=-1[/tex]

But it's not true.

[[tex]m_{1}\times m_{2}=(\frac{3}{2})(-\frac{3}{2})[/tex] = -[tex]\frac{9}{4}[/tex]]

It shows that the consecutive sides of the quadrilateral are not perpendicular.

Therefore, ABCD is neither square nor a rectangle.

Slope of diagonal BD = [tex]\frac{4+2}{-3+3}[/tex]

                                    = Not defined (parallel to y-axis)

Slope of diagonal AC = [tex]\frac{1-1}{-1+5}[/tex]

                                    = 0 [parallel to x-axis]

Therefore, both the diagonals AC and BD will be perpendicular.

And the quadrilateral formed by the given points will be a rhombus.