Respuesta :

Answer:

 -g5 - g4h + 3g3h2 + g2h3 - g2h2 + g2 - 2gh4 - 2gh3 - gh - h4 / (g + h) • (g - h)2  

Step-by-step explanation:

Answer:

  ? = h

Step-by-step explanation:

Solve for ?:

  [tex]\dfrac{g}{g^2-h^2}-\dfrac{?}{(g-h)^2}=\dfrac{g^2-2gh-h^2}{(g-h)^2(g+h)}\\\\\dfrac{g(g-h)}{(g-h)^2(g+h)}-\dfrac{?(g+h)}{(g-h)^2(g+h)}=\dfrac{g^2-2gh-h^2}{(g-h)^2(g+h)}\\\\\dfrac{g^2 -gh -?(g+h)}{(g-h)^2(g+h)}=\dfrac{g^2-2gh-h^2}{(g-h)^2(g+h)}\\\\\text{Equating numerators, we have ...}\\\\g^2-gh-?(g+h)=g^2-gh-h(g+h)\\\\?=\dfrac{-h(g+h)}{-(g+h)}=h[/tex]

The numerator of interest is h.