Respuesta :

Answer:

[tex]y=-\frac{3}{2}x-\frac{9}{2}[/tex]

Step-by-step explanation:

Let the equation of the perpendicular line is,

y = mx + b

where m = slope of the line

b = y-intercept

From the graph, slope of the line passing through (0, -1) and (3, 1),

m' = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

m' = [tex]\frac{1+1}{3-0}[/tex]

m' = [tex]\frac{2}{3}[/tex]

To get the slope (m) of this line we will use the property of perpendicular lines,

m × m' = (-1)

m × [tex]\frac{2}{3}[/tex] = -1

m = [tex]-\frac{3}{2}[/tex]

Equation of the perpendicular line will be,

[tex]y=-\frac{3}{2}x+b[/tex]

x-intercept of the line is (-3) therefore, point on the line is (-3, 0)

0 = [tex]-\frac{3}{2}(-3)+b[/tex]

b = [tex]-\frac{9}{2}=-4.5[/tex]

Equation of the line will be,

[tex]y=-\frac{3}{2}x-\frac{9}{2}[/tex]