Respuesta :

Answer:

R(19, 4)

Step-by-step explanation:

Given the midpoint [tex]\overline R\overline S[/tex] to be (19.5, 9.5) with one ens point S as (20, 15), to get the coordinate of the other end point, we need to use the formula for calculating the midpoint of two coordinates.

for x coordinate;

X = [tex]\frac{x_1+x_2}{2}[/tex]

for y coordinate;

Y = [tex]\frac{y_1+y_2}{2}[/tex]

where (X, Y) is the midpoint

Given [tex]x_1[/tex] = 20, and [tex]y_1[/tex] = 15, we are to get the coordinate ([tex]x_2[/tex], [tex]y_2[/tex])

(X, Y) = [tex][\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}][/tex]

(19.5, 9.5) = [tex][\frac{20+x_2}{2}, \frac{15+y_2}{2}][/tex]

comparing the coordinates;

[tex]\frac{20+x_2}{2} = 19.5\ and \frac{15+y_2}{2} = 9.5\\20+x_2 = 39\\x_2 = 39-20\\x_2 = 19\\\\Similarly;\\15+y_2 = 19\\y_2 = 19-15\\y_2 = 4[/tex]

The coordinate R will be (19, 4)