Respuesta :

Answer:

[tex]\frac{b+a}{b-a}[/tex]

Step-by-step explanation:

Tan θ = [tex]\frac{perpendicular}{base}[/tex] = [tex]\frac{b}{a}[/tex]

So, Perpendicular = b, base = a

Finding hypotenuse by Pythagorean Theorem:

[tex]c^2 = a^2+b^2[/tex]

=> So, hypotenuse = c

Sin θ = [tex]\frac{perpendicular}{hypotenuse}= \frac{b}{c}[/tex]

Cos θ = [tex]\frac{base}{hypotenuse}= \frac{a}{c}[/tex]

So, Now finding [tex]\frac{sin\theta+cos\theta}{sin\theta-cos\theta}[/tex]

=> [tex]\frac{b}{c} + \frac{a}{c}[/tex] ÷ [tex]\frac{b}{c} - \frac{a}{c}[/tex]

=> [tex]\frac{b+a}{c}[/tex] ÷ [tex]\frac{b-a}{c}[/tex]

=> [tex]\frac{b+a}{c} * \frac{c}{b-a}[/tex]

=> [tex]\frac{b+a}{b-a}[/tex]