Respuesta :

Answer:

Step-by-step explanation:

Answer:

so the coordinates of C are (12,29)

Step-by-step explanation:

as we know that CD is a line segment and M is its mid-point in order to find the coordinates of C we will use mid-point formula

[tex]M(x,y)=(\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]

putting the values of known coordinates

[tex](15,-6.5)=(\frac{x1+18}{2},\frac{y1+(-16)}{2})[/tex]

comparing the coordinates separately

[tex]15=\frac{x1+18}{2}[/tex]                    and   [tex]-6.5=\frac{y1-16}{2}[/tex]

15×2=x1+18                   and     -6.5×2=y1-16

30=x1+18                     and         13=y1-16

30-18=x1                    and           13+16=y1

12=x1                            and             29=y1

so the coordinates of C are (12,29)

in order to check the values put it back in the mid-point formula to find the coordinates of M

I HOPE THIS WILL HELP YOU :)