Respuesta :

Answer:

The value of n for which xₙ₋₂ + xₙ₋₁ + xₙ = 68 is n = 9

Step-by-step explanation:

The nth term of Fibonacci number is given by the following relation;

[tex]F_n = \dfrac{(1 + \sqrt{5} )^n - (1 - \sqrt{5} )^n }{2^n\sqrt{5} }[/tex]

Given that we have ;

[tex]\Sigma x_n = \dfrac{(1 + \sqrt{5} )^{n-2} - (1 - \sqrt{5} )^{n-2} }{2^{n-2}\sqrt{5} } + \dfrac{(1 + \sqrt{5} )^{n-1} - (1 - \sqrt{5} )^{n-1} }{2^{n-1}\sqrt{5} }+\dfrac{(1 + \sqrt{5} )^{n} - (1 - \sqrt{5} )^{n} }{2^{n}\sqrt{5} }[/tex]When n = 3, we have;

∑xₙ = 4

When n = 4 we have

∑xₙ = 4

When n = 6 we have

∑xₙ = 16

When n = 9 we have

∑xₙ = 68

Therefore, we have the value of n for which xₙ₋₂ + xₙ₋₁ + xₙ = 68 is n = 9.