Use similar triangles to calculate the height, h cm, of triangle ABE.
10 cm
С
В.
36 cm
E
20 cm

Answer:
Solution,
from the figure,height of ∆ DBC=36-h
Now,in two similar triangles, ratio of corresponding sides are equal to ratio of their heights.
Since, ∆DBC~∆EBA
[tex] \frac{36 - h}{h} = \frac{dc}{ae} \\ or \: \frac{36 - h}{h} = \frac{10}{20} \\ or \: 20(36 - h) = 10 \times h(cross \: multiplication) \\ or \: 720 - 20h = 10h \\ or \: - 20h - 10h = - 720 \\ or \: - 30h = - 720 \\ or \: h = \frac{ - 720}{ - 30} \\ h = 24 \: cm[/tex]
Height of ABE =24 cm
hope this helps...
Good luck on your assignment...