Use the formula to find the standard error of the distribution of differences in sample means, .
Samples of size 105 from Population 1 with mean 88 and standard deviation 12 and samples of size 70 from Population 2 with mean 78 and standard deviation 16
Round your answer for the standard error to two decimal places.

Respuesta :

Answer:

[tex] SE= \sqrt{\frac{\sigma^2_1}{n_1}+\frac{\sigma^2_2}{n_2}}[/tex]

And replacing we got:

[tex] SE= \sqrt{\frac{12^2_1}{105}+\frac{16^2_2}{70}}= 2.24[/tex]

Step-by-step explanation:

We have the following info given:

[tex] n_1= 105, \mu_1 = 88, \sigma_1 =12[/tex]

[tex] n_2= 70, \mu_2 = 78, \sigma_2 =16[/tex]

And for this case we want to find the standard error for the following variable [tex]\bar X_1 -\bar X_2[/tex] and the standard error for this distribution is given by:

[tex] SE= \sqrt{\frac{\sigma^2_1}{n_1}+\frac{\sigma^2_2}{n_2}}[/tex]

And replacing we got:

[tex] SE= \sqrt{\frac{12^2_1}{105}+\frac{16^2_2}{70}}= 2.24[/tex]