Respuesta :
Answer:
[tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy = -9 \ln (12)[/tex]
General Formulas and Concepts:
Pre-Calculus
- Partial Fraction Decomposition
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
U-Substitution
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy[/tex]
Step 2: Integrate Pt. 1
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy = 13\int\limits^{10}_{-1} {\frac{y}{y^2 - 9y - 22}} \, dy[/tex]
- [Integrand] Factor: [tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy = 13\int\limits^{10}_{-1} {\frac{y}{(y - 11)(y + 2)}} \, dy[/tex]
Step 3: integrate Pt. 2
- [Integrand] Split [Partial Fraction Decomp]: [tex]\displaystyle \frac{y}{(y - 11)(y + 2)} = \frac{A}{y - 11} + \frac{B}{y + 2}[/tex]
- [Decomp] Rewrite: [tex]\displaystyle y = A(y + 2) + B(y - 11)[/tex]
- [Decomp] Substitute in y = -2: [tex]\displaystyle -2 = A(-2 + 2) + B(-2 - 11)[/tex]
- Simplify: [tex]\displaystyle -2 = -13B[/tex]
- Solve: [tex]\displaystyle B = \frac{2}{13}[/tex]
- [Decomp] Substitute in y = 11: [tex]\displaystyle 11 = A(11 + 2) + B(11 - 11)[/tex]
- Simplify: [tex]\displaystyle 11 = 13A[/tex]
- Solve: [tex]\displaystyle A = \frac{11}{13}[/tex]
- [Split Integrand] Substitute in variables: [tex]\displaystyle \frac{y}{(y - 11)(y + 2)} = \frac{\frac{11}{13}}{y - 11} + \frac{\frac{2}{13}}{y + 2}[/tex]
Step 4: Integrate Pt. 3
- [Integral] Rewrite [Split Integrand]: [tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy = 13\int\limits^{10}_{-1} {\bigg( \frac{\frac{11}{13}}{y - 11} + \frac{\frac{2}{13}}{y + 2} \bigg)} \, dy[/tex]
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy = 13 \bigg[ \int\limits^{10}_{-1} {\frac{\frac{11}{13}}{y - 11}} \, dy + \int\limits^{10}_{-1} {\frac{\frac{2}{13}}{y + 2}} \, dy \bigg][/tex]
- [Integrals] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy = 13 \bigg[ \frac{11}{13}\int\limits^{10}_{-1} {\frac{1}{y - 11}} \, dy + \frac{2}{13}\int\limits^{10}_{-1} {\frac{1}{y + 2}} \, dy \bigg][/tex]
Step 5: Integrate Pt. 4
Identify variables for u-substitution.
Integral 1
- Set u: [tex]\displaystyle u = y - 11[/tex]
- [u] Differentiation [Basic Power Rule, Derivative Properties]: [tex]\displaystyle du = dy[/tex]
- [Bounds] Switch: [tex]\displaystyle \left \{ {{y = 10 ,\ u = 10 - 11 = -1} \atop {y = -1 ,\ u = -1 - 11 = -12}} \right.[/tex]
Integral 2
- Set v: [tex]\displaystyle v = y + 2[/tex]
- [v] Differentiate [Basic Power Rule, Derivative Properties]: [tex]\displaystyle dv = dy[/tex]
- [Bounds] Switch: [tex]\displaystyle \left \{ {{y = 10 ,\ v = 10 + 2 = 12} \atop {y = -1 ,\ v = -1 + 2 = 1}} \right.[/tex]
Step 6: Integrate Pt. 5
- [Integrals] U-Substitution: [tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy = 13 \bigg[ \frac{11}{13}\int\limits^{-1}_{-12} {\frac{1}{u}} \, du + \frac{2}{13}\int\limits^{12}_{1} {\frac{1}{v}} \, dv \bigg][/tex]
- [Integrals] Logarithmic Integration: [tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy = 13 \bigg[ \frac{11}{13}(\ln |u|) \bigg| \limits^{-1}_{-12} + \frac{2}{13}(\ln |v|) \bigg| \limits^{12}_{1} \bigg][/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy = 13 \bigg[ \frac{11}{13}[-\ln (12)] + \frac{2}{13}[\ln (12)] \bigg][/tex]
- Simplify: [tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy = 11[-\ln (12)] + 2[\ln (12)][/tex]
- Simplify: [tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy = -11\ln (12)] + 2\ln (12)[/tex]
- Simplify: [tex]\displaystyle \int\limits^{10}_{-1} {\frac{13y}{y^2 - 9y - 22}} \, dy = -9 \ln (12)[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration