Explanation:
Formula to calculate the energy stored in a capacitor when it is filled with air is,
[tex] U_{1}=\frac{1}{2} C V_{1}^{2} [/tex]]
Here, [tex]U_{1}[/tex] is the energy stored in a capacitor when it is filled with air.
[tex]C[/tex] is the parallel plate capacitor.
[/tex]V_{\mathrm{i}}[/tex] is the initial potential difference.
Substitute [tex]2.00 \mathrm{nF}[/tex] for [tex]C[/tex] and [tex]100 \mathrm{V}[/tex] for [tex]V_{\mathrm{i}}[/tex] to find the [tex]U_{1}[/tex]
[tex] \begin{array}{c} U_{1}=\frac{1}{2}\left(2.00 \mathrm{nF}\left(\frac{10^{9} \mathrm{F}}{1 \mathrm{n} \mathrm{F}}\right)\right)(100 \mathrm{V})^{2} \\ =10^{-5} \mathrm{J} \end{array} [/tex]]
Formula to calculate the energy stored in a capacitor when it is filled with dielectric is,