Respuesta :
Answer:
[tex]\mathbf{F_{AB} = 13785.06 N }[/tex]
[tex]\mathbf{F_{AC} = -5062.38 N }[/tex]
[tex]\mathbf{F_{AD} = -5062.38 N }[/tex]
Explanation:
From the given information:
Let calculate the position vector of AB, AC, and AD
To start with AB; in order to calculate the position vector of AB ; we have:
[tex]r_{AB}^{\to} = r _{OA}^{\to} - r_{OB}^{\to} \\ \\ r_{AB}^{\to} = (2.6 \ \hat i + 2.6 \ \hat j - 2.2 \ \hat k ) - ( 1.5 \ \hat i + \ 1. 5 \hat j ) \\ \\ r_{AB}^{\to} = ( 2.6 \ \hat i - 1.5 \ \hat i + 2.6 \ \hat j - 1.5 \ \hat j - 2.2 \ \hat k) \\ \\ r_{AB}^{\to} = (1.1 \ \hat i + 1.1 \ \hat j - 2.2 \ \hat k ) m[/tex]
To calculate the position vector of AC; we have:
[tex]r_{AC}^{\to} = r _{OA}^{\to} - r_{OC}^{\to} \\ \\ r_{AC}^{\to} = (2.6 \ \hat i + 2.6 \ \hat j - 2.2 \ \hat k ) - ( 2\ \hat i + \ \hat j - 1.2 \ \hat k) \\ \\ r_{AC}^{\to} = ( 2.6 \ \hat i - 2\ \hat i + 2.6 \ \hat j - \ \hat j - 2.2 \ \hat k + 1.2 \ \hat k) \\ \\ r_{AC}^{\to} = (0.6 \ \hat i + 1.6 \ \hat j - \ \hat k ) m[/tex]
To calculate the position vector of AD ; we have:
[tex]r_{AD}^{\to} = r _{OA}^{\to} - r_{OD}^{\to} \\ \\ r_{AC}^{\to} = (2.6 \ \hat i + 2.6 \ \hat j - 2.2 \ \hat k ) - ( \hat i + \ 2 \hat j - 1.2 \ \hat k) \\ \\ r_{AD}^{\to} = ( 2.6 \ \hat i - \hat i + 2.6 \ \hat j - 2 \ \hat j - 2.2 \ \hat k + 1.2 \ \hat k) \\ \\ r_{AD}^{\to} = (1.6 \ \hat i + 0.6 \ \hat j - \ \hat k ) m[/tex]
However; let's calculate the force in AB, AC and AD in their respective unit vector form;
To start with unit vector AB by using the following expression; we have:
[tex]F_{AB}^{\to} = F_{AB} \dfrac{ r _{AB}^{\to} }{|r_{AB}^{\to}} \\ \\ \\ F_{AB}^{\to} = F_{AB} \dfrac{(1.1 \ \hat i + 1.1 \ \hat j - 2.2 \ \hat k ) }{\sqrt{ (1.1)^2 + (1.1)^2 + (-2.2 )^2 }} \\ \\ \\ F_{AB}^{\to} = F_{AB} \dfrac{(1.1 \ \hat i + 1.1 \ \hat j - 2.2 \ \hat k ) }{ \sqrt{7.26}} \\ \\ \\ F_{AB}^{\to} = F_{AB} \dfrac{(1.1 \ \hat i + 1.1 \ \hat j - 2.2 \ \hat k ) }{ 2.6944} \\ \\ \\ F_{AB}^{\to} = F_{AB} (0.408 \ \hat i+ 0.408 \ \hat j - 0.8165 \ \hat k ) N\\[/tex]
The force AC in unit vector form is ;
[tex]F_{AC}^{\to} = F_{AC} \dfrac{ r _{AC}^{\to} }{|r_{AC}^{\to}} \\ \\ \\ F_{AC}^{\to} = F_{AC} \dfrac{(0.6 \ \hat i + 1.6 \ \hat j - \ \hat k ) }{\sqrt{ (0.6)^2 + (1.6)^2 + (-1 )^2 }} \\ \\ \\ F_{AC}^{\to} = F_{AC} \dfrac{(0.6 \ \hat i + 1.6 \ \hat j - \ \hat k ) }{ \sqrt{3.92}} \\ \\ \\ F_{AC}^{\to} = F_{AC} \dfrac{(0.6 \ \hat i + 1.6 \ \hat j - \ \hat k ) }{1.9798} \\ \\ \\ F_{AC}^{\to} = F_{AC} (0.303 \ \hat i+ 0.808 \ \hat j - 0.505 \ \hat k ) N\\[/tex]
The force AD in unit vector form is ;
[tex]F_{AD}^{\to} = F_{AD} \dfrac{ r _{AD}^{\to} }{|r_{AD}^{\to}|} \\ \\ \\ F_{AD}^{\to} = F_{AD} \dfrac{(1.6 \ \hat i + 0.6 \ \hat j - \ \hat k ) }{\sqrt{ (1.6)^2 + (0.6)^2 + (-1 )^2 }} \\ \\ \\ F_{AD}^{\to} = F_{AD} \dfrac{(1.6 \ \hat i + 0.6 \ \hat j - \ \hat k ) }{ \sqrt{3.92}} \\ \\ \\ F_{AD}^{\to} = F_{AD} \dfrac{(1.6 \ \hat i + 0.6 \ \hat j - \ \hat k ) }{1.9798} \\ \\ \\ F_{AD}^{\to} = F_{AD} (0.808 \ \hat i+ 0.303 \ \hat j - 0.505 \ \hat k ) N\\[/tex]
Similarly ; the weight of the lunar Module is:
W = mg
where;
mass = 13500 kg
acceleration due to gravity= 1.82 m/s²
W = 13500 × 1.82
W = 24,570 N
Also. we known that the load is shared by four landing gears; Thus, the vertical reaction force exerted by the ground on each landing gear can be expressed as:
[tex]R =\dfrac{W}{4}[/tex]
[tex]R =\dfrac{24,570}{4}[/tex]
R = 6142.5 N
Now; the reaction force at point A in unit vector form is :
[tex]R^{\to} = Rk^{\to} \\ \\ R^{\to} = (6142.5 \ k ^{\to}) \ N[/tex]
Using the force equilibrium at the meeting point of the coordinates at A.
[tex]\sum F^{\to} = 0[/tex]
[tex]F_{AB}^{\to} +F_{AC}^{\to} + F_{AD}^{\to} + R^{\to} =0[/tex]
[tex][F_{AB} (0.408 \ \hat i + 0.408 \ \hat j - 0.8165 \ \hat k ) N + F_{AC} (0.303 \ \hat i + 0.808 \ \hat j - 0.505 \ \hat k ) N + F_{AD} (0.808 \ \hat i + 0.303 \ \hat j - 0.505 \ \hat k) N + (6142.5 \ k^ \to ) ][/tex]
[tex]= [ ( 0.408 F_{AB} +0.303 F_{AC} + 0.808F_{AD}) \hat i + (0.408 F_{AB}+0.808F_{AC}+0.303F_{AD}) \hat j + (-0.8165 F_{AB} -0.505F_{AC} -0.505 F_{AD} +6142.5 ) k ^ \to ] = 0[/tex]
From above; we need to relate and equate each coefficients i.e i ,j, and [tex]k ^ \to[/tex] on both sides ; so, we can re-write that above as;
[tex]0.408 F_{AB} +0.303 F_{AC} + 0.808F_{AD}) =0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ --- (1) \\ \\ 0.408 F_{AB}+0.808F_{AC}+0.303F_{AD}) =0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ --- (2) \\ \\ -0.8165 F_{AB} -0.505F_{AC} -0.505 F_{AD} +6142.5 = 0 --- (3)[/tex]
Making rearrangement and solving by elimination method;
[tex]\mathbf{F_{AB} = 13785.06 N }[/tex]
[tex]\mathbf{F_{AC} = -5062.38 N }[/tex]
[tex]\mathbf{F_{AD} = -5062.38 N }[/tex]
The force vector of each member, depends on the magnitude of the
force and the unit vector of the member.
Responses:
The force supported by the members are;
- Force supported by AB is; 13,799.95 N
- Force supported by AC is; -5070.2 N
- Force supported by AD is -5070.2 N
How can the unit vector of each member give their force?
Resolving the given members into unit vectors gives;
[tex]\hat u_{AB} = \mathbf{\dfrac{(2.6 - 1.5) \cdot \hat i + (2.6 - 1.5)\cdot \hat j + (-2.2)\cdot \hat k }{\sqrt{(2.6- 1.5)^2 + (2.6 - 1.5)^2 + (-2.2)^2}}}[/tex][tex]\dfrac{(2.6 - 1.5) \cdot \hat i + (2.6 - 1.5)\cdot \hat j + (-2.2)\cdot \hat k }{\sqrt{(2.6- 1.5)^2 + (2.6 - 1.5)^2 + (-2.2)^2}}= 0.40825 \cdot \hat i + 0.40825\cdot \hat j - 0.81625\cdot \hat k[/tex]
- [tex]\hat u_{AB} = \mathbf{0.40825 \cdot \hat i + 0.40825\cdot \hat j - 0.81625\cdot \hat k}[/tex]
Similarly, we have;
[tex]\hat u_{AC} =\mathbf{ \dfrac{(2.6 - 2) \cdot \hat i + (2.6 - 1)\cdot \hat j + (-2.2+1.2)\cdot \hat k }{\sqrt{(2.6- 2)^2 + (2.6 - 1)^2 + (-2.2+1.2)^2}}}[/tex]
[tex]\dfrac{(2.6 - 2) \cdot \hat i + (2.6 - 1)\cdot \hat j + (-2.2+1.2)\cdot \hat k }{\sqrt{(2.6- 2)^2 + (2.6 - 1)^2 + (-2.2+1.2)^2}} =\dfrac{0.6\cdot \hat i +1.6\cdot \hat j -1\cdot \hat k }{\sqrt{0.6^2 + 1.6^2 + (-1.)^2}}[/tex]
[tex]\dfrac{0.6\cdot \hat i +1.6\cdot \hat j -1\cdot \hat k }{\sqrt{0.6^2 + 1.6^2 + (-1.)^2}}= 0.303046\cdot \hat i + 0.80812\cdot \hat j - 0.50508\cdot \hat k[/tex]
- [tex]\hat u_{AC} =\mathbf{0.303046\cdot \hat i + 0.80812\cdot \hat j - 0.50508\cdot \hat k}[/tex]
[tex]\hat u_{AD} =\mathbf{ \dfrac{(2.6 - 1) \cdot \hat i + (2.6 -2)\cdot \hat j + (-2.2 + 1.2)\cdot \hat k }{\sqrt{(2.6-1)^2 + (2.6 -2))^2 + (-2.2 + 1.2)^2}}}[/tex]
[tex]\hat u_{AD} =\mathbf{0.80812\cdot \hat i+ 0.303046\cdot \hat j - 0.50508\cdot \hat k}[/tex]
The forces are therefore;
[tex]\vec F_{AB} =\mathbf{ F_{AB} \cdot \left ( 0.40825 \cdot \hat i + 0.40825\cdot \hat j - 0.81625\cdot \hat k \right)}[/tex]
[tex]\vec F_{AC} =\mathbf{ F_{AC} \cdot \left (0.303046\cdot \hat i + 0.80812\cdot \hat j - 0.50508\cdot \hat k\right)}[/tex]
[tex]\vec F_{AD} = \mathbf{F_{AD} \cdot \left (0.80812\cdot \hat i+ 0.303046\cdot \hat j - 0.50508\cdot \hat k\right)}[/tex]
[tex]Weight \ on \ the \ assembly = \dfrac{13,500 \, kg \times 1.82 \, m/s^2}{4} = 6,142.5 \, \hat k N[/tex]
Which gives;
[tex]\mathbf{0.40825 \cdot \hat i \cdot F_{AB}}[/tex] + [tex]0.303046\cdot \hat i \cdot F_{AC}[/tex] + [tex]0.80812\cdot \hat i \cdot F_{AD}[/tex] = 0
[tex]0.40825 \cdot \hat j \cdot F_{AB}[/tex] + [tex]0.80812\cdot \hat j \cdot F_{AC}[/tex] + [tex]0.303046 \cdot \hat j \cdot F_{AD}\left[/tex] = 0
[tex]-0.81625\cdot \hat k \cdot F_{AB}[/tex] - [tex]0.50508\cdot \hat k \cdot F_{AC}[/tex] - [tex]0.50508\cdot \hat k \cdot F_{AD}[/tex] + [tex]\mathbf{6,142.5 \, \hat k}[/tex] = 0
Which gives;
[tex]-0.81625\cdot \hat k \cdot F_{AB}[/tex] - [tex]0.50508\cdot \hat k \cdot F_{AC}[/tex] - [tex]0.50508\cdot \hat k \cdot F_{AD}[/tex] = [tex]-6,142.5 \, \hat k[/tex]
Solving gives;
- [tex]F_{AB}[/tex] = 13799.95 N
- [tex]F_{AC}[/tex] = -5070.2 N
- [tex]F_{AD}[/tex] = -5070.2 N
Learn more about unit vectors here:
https://brainly.com/question/13289984
https://brainly.com/question/18703034
