Answer:
(B)[tex]\dfrac{dA}{dt}=8-0.004A[/tex]
Step-by-step explanation:
Volume of fluid in the tank =1000 gallons
Initial Amount of Salt in the tank, A(0)= 30 pounds
Incoming brine solution of concentration 2 pounds of salt per gallon is pumped in at a rate of 4 gallons per minute.
Rate In=(concentration of salt in inflow)(input rate of brine)
[tex]=(2\frac{lbs}{gal})( 4\frac{gal}{min})=8\frac{lbs}{min}[/tex]
The resulting mixture is pumped out at the same rate, therefore:
Rate Out =(concentration of salt in outflow)(output rate of brine)
[tex]=(\frac{A(t)}{1000})( 4\frac{gal}{min})=\frac{A}{250}[/tex]
Therefore:
The rate of change of amount of salt in the tank,
[tex]\dfrac{dA}{dt}=$Rate In-Rate out\\\dfrac{dA}{dt}=8-\dfrac{A}{250}\\\dfrac{dA}{dt}=8-0.004A[/tex]