Choose the correct number to finish the sentence. For the function f(x)=√x+4, the average rate of change to the nearest hundredth over the interval 2 ≤ x ≤ 6 is? A. 0.2 B. 0.17 C. 0.16 D. 0.18

Respuesta :

Space

Answer:

See below under "explanation".

General Formulas and Concepts:

Algebra I

Functions

  • Function Notation

Average Rate of Change Formula:
[tex]\displaystyle \text{Average Rate of Change} = \frac{f(b) - f(a)}{b - a}[/tex]

  • b is upper interval bound
  • a is lower interval bound

Step-by-step explanation:

*Note:

The function is unclear, so I will provide 2 possible answers.

Step 1: Define

Identify given.

[tex]\displaystyle \begin{aligned}1. \ f(x) & = \sqrt{x} + 4 \\2. \ f(x) & = \sqrt{x + 4} \\\end{aligned}[/tex]

[tex]\displaystyle \text{Interval: } 2 \leq x \leq 6[/tex]

Step 2: Find Average Rate of Change

For the 1st function:

[tex]\displaystyle\begin{aligned}\text{Average Rate of Change} & = \frac{\big( \sqrt{b} + 4 \big) - \big( \sqrt{a} + 4 \big)}{b - a} \\& = \frac{\big( \sqrt{6} + 4 \big) - \big( \sqrt{2} + 4 \big)}{6 - 2} \\& = \frac{\sqrt{6} - \sqrt{2}}{4} \\& = 0.258819 \\& \approx \boxed{0.26} \\\end{aligned}[/tex]

∴ the average rate of change, if using the 1st defined function, will be approximately 0.26.

For the 2nd function:

[tex]\displaystyle\begin{aligned}\text{Average Rate of Change} & = \frac{\sqrt{b + 4} - \sqrt{a + 4} }{b - a} \\& = \frac{\sqrt{6 + 4} - \sqrt{2 + 4}}{6 - 2} \\& = \frac{\sqrt{10} - \sqrt{6}}{4} \\& = 0.178197 \\& \approx \boxed{0.18} \\\end{aligned}[/tex]

∴ the average rate of change, if using the 2nd defined function, will be approximately 0.18.

---

Learn more about functions: https://brainly.com/question/16217435
Learn more about Algebra I: https://brainly.com/question/10405469

---

Topic: Algebra I