Tasha used the pattern in the table to find the value of 4 Superscript negative 4. Powers of 4 Value 4 squared 16 4 Superscript 1 4 4 Superscript 0 1 4 Superscript negative 1 One-fourth 4 Superscript negative 2 StartFraction 1 Over 16 EndFraction She used these steps. Step 1 Find a pattern in the table. The pattern is to divide the previous value by 4 when the exponent decreases by 1. Step 2 Find the value of 4 Superscript negative 3. 4 Superscript negative 3 = StartFraction 1 Over 16 EndFraction divided by 4 = StartFraction 1 Over 16 EndFraction times one-fourth = StartFraction 1 Over 64 EndFraction Step 3 Find the value of 4 Superscript negative 4. 4 Superscript negative 4 = StartFraction 1 Over 64 EndFraction divided by 4 = StartFraction 1 Over 64 EndFraction times one-fourth = StartFraction 1 Over 256 EndFraction Step 4 Rewrite the value for 4 Superscript negative 4. StartFraction 1 Over 256 EndFraction = negative StartFraction 1 Over 4 Superscript negative 4 EndFraction In which step did Tasha make the first error? Step 1 Step 2 Step 3 Step 4

Respuesta :

Answer:

Step 4

Step-by-step explanation:

The table is given below

[tex]\left|\begin{array}{c|c}$Powers of 4 &$Value\\---&---\\4^2&16\\4^1&4\\4^0&1\\4^{-1}&\dfrac14\\4^{-2}&\dfrac{1}{16}\end{array}\right|[/tex]

Tasha wants to find the value of [tex]4^{-4}[/tex].

Her steps are:

Step 1: Find a pattern in the table.

The pattern is to divide the previous value by 4 when the exponent decreases by 1.

Step 2: Find the value of [tex]4^{-3}[/tex].

[tex]4^{-3}=\dfrac{1}{16} \div 4= \dfrac{1}{16} \times \dfrac{1}{4}= \dfrac{1}{64}[/tex]

Step 3: Find the value of  [tex]4^{-4}[/tex].

 [tex]4^{-4}= \dfrac{1}{64} \div 4 = \dfrac{1}{64} \times \dfrac{1}{4}= \dfrac{1}{256}[/tex]  

Step 4: Rewrite the value for  [tex]4^{-4}[/tex].

[tex]\dfrac{1}{256} = -\dfrac{1}{4^{-4}}[/tex]

Tasha made her first error in Step 4. The correct step is:

[tex]\dfrac{1}{256} = \dfrac{1}{4^{4}}[/tex]

Answer:

Step-by-step explanation:

First error step 4