Respuesta :
Answer:
101
Step-by-step explanation:
We are given that
r(t)=[tex]<t^2,1-t,4t>[/tex]
We have to find the derivative of r(t).a(t) at t=2
a(2)=<7,-3,7> and a'(2)=<3,2,4>
We know that
[tex]\frac{d(uv)}{dx}=u'v+v'u[/tex]
Using the formula
[tex]\frac{d(r(t)\cdot at(t))}{dt}=r'(t)\cdot a(t)+r(t)\cdot a'(t)[/tex]
[tex]\frac{d(r(t)\cdot at(t))}{dt}=<2t,-1,4>\cdot a(t)+<t^2,1-t,4t>\cdot a'(t)[/tex]
Substitute t=2
[tex]\frac{d(r(t)\cdot at(t))}{dt}_|t=2=<4,-1,4>\cdot a(2)+<4,-1,8>\cdot a'(2)[/tex]
[tex]\frac{d(r(t)\cdot at(t))}{dt}_|t=2=<4,-1,4>\cdot <7,-3,7>+<4,-1,8>\cdot <3,2,4>[/tex]
[tex]\frac{d(r(t)\cdot at(t))}{dt}_|t=2=28+3+28+12-2+32=101[/tex]
The derivation of the equation will be "101".
Differentiation:
Given expression is:
r(t) = 〈t², 1 - t, 4t〉
Let,
a(2) = <7, -3, 7>
a'(2) = <3, 2, 4>
As we know,
→ [tex]\frac{d(uv)}{dx}[/tex] = u'v + v'u
By using the formula, the derivation will be:
→ [tex]\frac{d(r(t).at(t))}{dt}[/tex] = r'(t).a(t) + r(t).a'(t)
= <2t, -1, 4>.a(t) + <t², 1 - t, 4t>.a'(t)
By substituting "t = 2", we get
= <4, -1, 4>.a(2) + <4, -1, 8>. a'(2)
= <4, -1, 4>.<7, -3, 7> + <4, -1, 8>.<3, 2, 4>
= 28 + 3 + 28 + 12 - 2 + 32
= 101
Thus the response above is appropriate.
Find out more information about derivatives here:
https://brainly.com/question/22068446