Which expression shows the simplified form of (8 r Superscript negative 5 Baseline) Superscript negative 3? 8 r Superscript 15 StartFraction 8 Over r Superscript 15 Baseline EndFraction 512 r Superscript 15 StartFraction r Superscript 15 Baseline Over 512 EndFraction

Respuesta :

Answer:

[tex]\frac{r^{15}}{512}[/tex]

Step-by-step explanation:

Given

[tex](8r^{-5})^{-3}[/tex]

Required

Simplify

This can be simplified using the following law of indices;

[tex](ab)^n = a^{n}b^{n}[/tex]

The equation becomes

[tex](8^{-3})(r^{-5})^{-3}[/tex]

Express [tex]8^{-3}[/tex] as a fraction

[tex](\frac{1}{8^{3}})(r^{-5})^{-3}[/tex]

Simplify [tex]8^3[/tex]

[tex](\frac{1}{8*8*8})(r^{-5})^{-3}[/tex]

[tex](\frac{1}{512})(r^{-5})^{-3}[/tex]

The expression can further be simplified using the following law of indices;

[tex](a^m)^n = a^{mn}[/tex]

[tex](\frac{1}{512})(r^{-5})^{-3}[/tex] becomes

[tex](\frac{1}{512})(r^{-5*-3})[/tex]

[tex](\frac{1}{512})(r^{15})[/tex]

[tex]\frac{r^{15}}{512}[/tex]

Hence, the solution to [tex](8r^{-5})^{-3}[/tex] is [tex]\frac{r^{15}}{512}[/tex]

Answer:

D

Step-by-step explanation: