Respuesta :

Answer:

(1) N or n = 20

(2) [tex]\bar X \text{ or } \mu[/tex] = 43.4

(3) σ = 9.78 and s = 10.04.

Step-by-step explanation:

We are given with the following data set below;

{51, 48, 42, 43, 48, 48, 46, 15, 29, 45, 47, 55, 46, 35, 47, 48, 54, 26, 53, 42}

(1) As we can see in the above data that there are 20 data values in our data set which means that the value of N or n (numner of observations) is 20.

(2) The formula for calculating Mean of the data, i.e. [tex]\bar X \text{ or } \mu[/tex] is given by;

        Mean  =  [tex]\frac{\sum X}{n}[/tex]

              =  [tex]\frac{51 +48+ 42+ 43+48+48+ 46+ 15+ 29+ 45+ 47+ 55+ 46+ 35+ 47+ 48+ 54+ 26+ 53+ 42}{20}[/tex]

              =  [tex]\frac{868}{20}[/tex]  = 43.4

So, the value of [tex]\bar X \text{ or } \mu[/tex] is 43.4.

(3) The formula for calculating population standard deviation ([tex]\sigma[/tex]) is given by;

        Standard deviation, [tex]\sigma[/tex] =  [tex]\sqrt{\frac{\sum (X - \bar X)^{2} }{N} }[/tex]

             =  [tex]\sqrt{\frac{(51-43.4)^{2}+(48-43.4)^{2}+.......+(42-43.4)^{2} }{20} }[/tex]

             =  9.78

Similarly, the formula for calculating sample standard deviation (s) is given by;

        Sample Standard deviation, s =  [tex]\sqrt{\frac{\sum (X - \bar X)^{2} }{n-1} }[/tex]

             =  [tex]\sqrt{\frac{(51-43.4)^{2}+(48-43.4)^{2}+.......+(42-43.4)^{2} }{20-1} }[/tex]

             =  10.04