Suppose the average lifetime of a certain type of car battery is known to be 60 months. Consider conducting a two-sided test on it based on a sample of size 25 from a normal distribution with a population standard deviation of 4 months.a) If the true average lifetime is 62 months and a =0.01, what is the probability of a type II error?b) What is the required sample size to satisfy and the type II error probability of b(62) = 0.1?

Respuesta :

Answer:

a. the probability of a type II  error is 0.5319

b. the required sample size to satisfy and the type II error probability  is 59.4441

Step-by-step explanation:

From the information given; we have:

sample size n = 25

Population standard deviation [tex]\sigma[/tex] = 4

true average lifetime = Sample Mean [tex]\bar X[/tex] = 62

We can state our null hypothesis and alternative hypothesis as follows:

Null hypothesis:

[tex]\mathbf{H_o : \mu = 60}[/tex]

Alternative hypothesis

[tex]\mathbf{H_1 : \mu \neq 60}[/tex]

Where ;

∝ = 0.01

From the standard normal tables at critical value ∝ = 0.01 ; the level of significance is -2.575 lower limit and 2.575 upper limit

The z statistics for the lower limit is:

[tex]lower \ limit = \dfrac{\bar X - \mu }{\dfrac{\sigma}{\sqrt {n}}}[/tex]

[tex]-2.575= \dfrac{\bar x - 60 }{\dfrac{4}{\sqrt 25}}}[/tex]

[tex]-2.575= \dfrac{\bar x - 60 }{0.8}}}[/tex]

[tex]-2.575*0.8= {\bar x - 60 }{}}}[/tex]

[tex]-2.06= {\bar x - 60 }{}}}[/tex]

[tex]\bar x = 60-2.06[/tex]

[tex]\bar x = 57.94[/tex]

The z statistics for the upper limit is:

[tex]lower \ limit = \dfrac{\bar X - \mu }{\dfrac{\sigma}{\sqrt {n}}}[/tex]

[tex]2.575= \dfrac{\bar x - 60 }{\dfrac{4}{\sqrt 25}}}[/tex]

[tex]2.575= \dfrac{\bar x - 60 }{0.8}}}[/tex]

[tex]2.575*0.8= {\bar x - 60 }{}}}[/tex]

[tex]2.06= {\bar x - 60 }{}}}[/tex]

[tex]\bar x = 60-(-2.06)[/tex]

[tex]\bar x = 60+2.06[/tex]

[tex]\bar x = 62.06[/tex]

Thus; the probability of a type II error is determined as follows:

β = P (  [tex]57.94 < \bar x < 62.06[/tex] )

[tex]= P ( \dfrac{57.94 -62 }{\dfrac{4}{\sqrt{25}}}<\dfrac{62.06 -62 }{\dfrac{4}{\sqrt{25}}})[/tex]

[tex]= P ( \dfrac{-4.06 }{0.8}}<\dfrac{2.06 }{0.8})[/tex]

= P ( -5.08 < Z < 0.08 )

= P ( Z < 0.08) - P ( Z < - 5.08)

Using Excel Function: [ (=NORMDIST (0.08)) - (=NORMDIST(-5.08)) ] ; we have:

= 0.531881372 - 0.00000001887

= 0.531881183

0.5319

b.

What is the required sample size to satisfy and the type II error probability of b(62) = 0.1

Recall that:

The critical value of ∝ = 2.575  ( i. e   [tex]Z_{1 - \alpha/2 } = 2.575[/tex]  )

Now ;

the critical value of β is :

[tex]Z _{1- \beta} = 1.28[/tex]

The  required sample size to satisfy and the type II error probability  is therefore determined as :

[tex]n = [\dfrac{(Z_{1 - \alpha/2} + Z_{1 - \beta} ) \sigma }{\delta}]^2[/tex]

[tex]n = [\dfrac{(2.575+1.28 ) 4 }{2}]^2[/tex]

[tex]n = [\dfrac{(3.855 ) 4 }{2}]^2[/tex]

[tex]n = [\dfrac{(15.42 ) }{2}]^2[/tex]

n = 7.71 ²

n= 59.4441

Thus; the required sample size to satisfy and the type II error probability  is 59.4441

A)

In order to calculate the Type II Error, we proceed with stating the factors:

Hypothesized Mean is given as  =  μ[tex]_{0} [/tex]        = 60

True Mean  is given as                 =  μa        = 62

Standard Deviation  is given as  = σ           = 4

Sample Size                                   = n           = 25

Standard error of mean                = σx          =σ/[tex]\sqrt{\\} [/tex]σ               =  0.80

given 0.01 level and two tailed test critical value Zσ             ±  2.58 or approximately 3

Acceptance region is

given as:   = μ - Z∝ * σx ≤ Π ≤ μ+Z∝⇄            =57.9360 ≤x≤   62.0640

Type II Error = probability of not rejecting β    = P(57.94-μa/σx))     <Z< (62.064-μa)/σx))

                                      = P (-5.08   <Z<    0.08)
                                      = 0.5319-0)

                                      = 0.532


B

Hypothesized mean                        = μ₀             =        60

True Mean                                        =μₐ               =       62          

Standard Deviation                          =σ                 =      4

for 0.01 level and two-tailed test critical value Z∝/2              ± 2.58

for 0.01 level of type II error critical value Z[tex]\beta [/tex]                         = 1.28

Required sample size    = n                                       = ([tex]Z_{\alpha /2} [/tex] + [tex]Z_{\beta } [/tex])²σ²/(μ₀-μ₀)²
                                                                                    = 60


See the link below for more about two-sided tests:
https://brainly.com/question/8170655