Respuesta :

AL2006

x = +7 or -7

a = +3 or -3

x = +19 or -5

n = -5 or -7

p = +4 or -2

x = +11 or +1

a = -11 or -7

k = +16 or 0

m = -1 or 0

r = +6 or +1    

: Answer:

Step-by-step explanation:

|3a|=9

a=3

2- |x–7|=12

For the Negative case we'll use -(x-7)  

For the Positive case we'll use (x-7)  

Solve the Negative Case

     -(x-7) = 12  

 Multiply

     -x+7 = 12  

    rearrange and Add up

     -x = 5  

    Multiply both sides by (-1)

     x = -5  (for negative)

Solve the Positive Case

     (x-7) = 12  

     x = 19  

 Which is the solution for the Positive Case

Wrap up the solution

x=-5             ,x=19

 4- |n+6|=1

The Absolute Value term is |n+6|

 For the Negative case we'll use -(n+6)  

For the Positive case we'll use (n+6)  

Solve the Negative Case

     -(n+6) = 1  

    Multiply

   -n-6 = 1  

  -n = 7  

  Multiply both sides by (-1)

     n = -7  

  Which is the solution for the Negative Case

Solve the Positive Case

     (n+6) = 1  

     n = -5  

Which is the solution for the Positive Case

Wrap up the solution

n=-7

n=-5

5-   |1–p|=3

The Absolute Value term is |-p+1|

 For the Negative case we'll use -(-p+1)  

For the Positive case we'll use (-p+1)  

Solve the Negative Case

     -(-p+1) = 3  

  Multiply

   p-1 = 3  

   Rearrange and Add up

     p = 4  

Solve the Positive Case

     (-p+1) = 3

Rearrange and Add up

   -p = 2  

 Multiply both sides by (-1)

p = -2

Which is the solution for the Positive Case

Wrap up the solution

p=4                             , p=-2

6 - |6–x|=5    

The Absolute Value term is |-x+6|

For the Negative case we'll use -(-x+6)  

For the Positive case we'll use (-x+6)  

Solve the Negative Case

   -(-x+6) = 5  

  Multiply

   x-6 = 5

 Rearrange and Add up

     x = 11  

Solve the Positive Case

     (-x+6) = 5  

 Rearrange and Add up

     -x = -1

  Multiply both sides by (-1)

  x = 1  

   Which is the solution for the Positive Case

Wrap up the solution

x=11              ,   x=1

7-

The Absolute Value term is |a+9|

 For the Negative case we'll use -(a+9)  

For the Positive case we'll use (a+9)  

Solve the Negative Case

     -(a+9) = 2  

  Multiply

     -a-9 = 2  

    Rearrange and Add up

     -a = 11  

  Multiply both sides by (-1)

   a = -11  

   Which is the solution for the Negative Case

Solve the Positive Case

     (a+9) = 2  

    Rearrange and Add up      a = -7  

 Which is the solution for the Positive Case

Wrap up the solution

a=-11    a=-7

8-  |k–8|=8

The Absolute Value term is |k-8|

For the Negative case we'll use -(k-8)  

For the Positive case we'll use (k-8)  

Solve the Negative Case

     -(k-8) = 8  

    Multiply

     -k+8 = 8  

    Rearrange and Add up

     -k = 0  

    Multiply both sides by (-1)

   k = 0  

  Which is the solution for the Negative Case

Solve the Positive Case

     (k-8) = 8  

  Rearrange and Add up

     k = 16  

    Which is the solution for the Positive Case

Wrap up the solution

k=0  k=16

Solutions on the Number Line

Two solutions were found :

k=16

k=0

9-|2m+1|=1

The Absolute Value term is |2m+1|  

For the Negative case we'll use -(2m+1)  

For the Positive case we'll use (2m+1)  

Solve the Negative Case

     -(2m+1) = 1  

    Multiply

     -2m-1 = 1  

Rearrange and Add up

     -2m = 2  

    Divide both sides by 2

     -m = 1  

    Multiply both sides by (-1)

     m = -1  

    Which is the solution for the Negative Case

Solve the Positive Case

     (2m+1) = 1  

Rearrange and Add up

  2m = 0  

  Divide both sides by 2

   m = 0  

 Which is the solution for the Positive Case

Wrap up the solution

m=-1

m=0

Solutions on the Number Line

Two solutions were found :

m=0

m=-1

9- |7–2r|=5

The Absolute Value term is |-2r+7|

For the Negative case we'll use -(-2r+7)  

Solve the Negative Case

     -(-2r+7) = 5  

    Multiply

     2r-7 = 5  

    Rearrange and Add up

     2r = 12  

    Divide both sides by 2

     r = 6  

Solve the Positive Case

     (-2r+7) = 5  

   Rearrange and Add up

   -2r = -2  

  Divide both sides by 2

   -r = -1  

 Multiply both sides by (-1)

   r = 1  

  Which is the solution for the Positive Case

Wrap up the solution

r=6

r=1