Find both the vector equation and the parametric equations of the line through ​(0​,0​,0​) that is perpendicular to both uequalsleft angle 2 comma 0 comma 2 right angle and wequalsleft angle negative 2 comma 1 comma 0 right angle where tequals0 corresponds to the given point.

Respuesta :

Complete Question:

Find both the vector equation and the parametric equations of the line through ​(0​,0​,0​) that is perpendicular to both [tex]u = < 2, 0, 2>[/tex] and [tex]w = < -2, 1, 0>[/tex] where t = 0 corresponds to the first given point.

Answer:

Vector equation: (x, y, z) = (0, 0, 0) + t ( u x w)

Parametric equation:

x = -2t

y = -4t

z = 2t

Step-by-step explanation:

Since the line is perpendicular to  [tex]u = < 2, 0, 2>[/tex] and [tex]w = < -2, 1, 0>[/tex] , we will find the cross product of u and w

[tex]u \times w = \left[\begin{array}{ccc}i&j&k\\2&0&2\\-2&1&0\end{array}\right] \\\\u \times w = i(0-2) -j(0+4) + k(2)\\\\u \times w = -2i - 4j + 2k\\\\u \times w = < -2, -4, 2>[/tex]

The equation of the line can be given by:

(x, y, z) = (0, 0, 0) + t ( u x w)

(x, y, z) = (0, 0, 0) + t < -2, -4, 2 >

x = -2t, y = -4t, z = 2t

The equation of the line and its parametric equations are [tex]\vec r = \langle 0,0,0 \rangle + t\cdot \langle -2,4,2 \rangle[/tex] and [tex](x,y, z) = (-2\cdot t, 4\cdot t, 2\cdot t)[/tex].

Determination of the vector equation and parametric equations of the line

Vectorially speaking, the equation of the line is defined by the following formula:

[tex]\vec r = \vec O + t\cdot \vec l[/tex] (1)

Where:

  • [tex]\vec O[/tex] - Vector intercept
  • [tex]t[/tex] - Parametric variable
  • [tex]\vec l[/tex] - Line vector

Since [tex]\vec l[/tex] must be perpendicular both to [tex]\vec u[/tex] and [tex]\vec v[/tex], then we must apply cross product:

[tex]\vec l = \left|\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\2&0&2\\2&1&0\end{array}\right|[/tex]

[tex]\vec l = \langle -2, 4, 2\rangle[/tex] (2)

Then, we have the following equation of the line: ([tex]\vec O = \langle 0,0,0 \rangle[/tex],  [tex]\vec l = \langle -2, 4, 2\rangle[/tex])

[tex]\vec r = \langle 0,0,0 \rangle + t\cdot \langle -2,4,2 \rangle[/tex]  (3)

And the parametric equations are, respectively:

[tex](x,y, z) = (-2\cdot t, 4\cdot t, 2\cdot t)[/tex] (4)

The equation of the line and its parametric equations are [tex]\vec r = \langle 0,0,0 \rangle + t\cdot \langle -2,4,2 \rangle[/tex] and [tex](x,y, z) = (-2\cdot t, 4\cdot t, 2\cdot t)[/tex]. [tex]\blacksquare[/tex]

Remarks

The statement presents typing mistakes and is poorly formatted. Correct form is shown below:

Find both vector equation and the parametric equations of the line through (0, 0, 0) that is perpendicular to the following two vectors: [tex]\vec u = \langle 2, 0, 2 \rangle[/tex], [tex]\vec v = (2, 1, 0)[/tex].

To learn more on line equations, we kindly invite to check this verified question: https://brainly.com/question/2564656

Ver imagen xero099