Answer:
95% of confidence interval for the Population
( 6.1386 , 6.8614)
Step-by-step explanation:
Step( i ):-
Given random sample size 'n' =85
Mean of the sample size x⁻ = 6.5 years
Standard deviation of Population = 1.7 years
Level of significance = 0.95 or 0.05
Step(ii):-
95% of confidence interval for the Population is determined by
[tex](x^{-} - Z_{0.05} \frac{S.D}{\sqrt{n} } , x^{-} + Z_{0.05} \frac{S.D}{\sqrt{n} })[/tex]
[tex](6.5 - 1.96\frac{1.7}{\sqrt{85} } , 6.5 + 1.96 \frac{1.7}{\sqrt{85} })[/tex]
( 6.5 - 0.3614 , 6.5 + 0.3614 )
( 6.1386 , 6.8614)
Conclusion:-
95% of confidence interval for the Population
( 6.1386 , 6.8614)