Answer:
C
Step-by-step explanation:
The scores in a recent statistics test are given in the frequency distribution below.
[tex]\left|\begin{array}{c|cc}$Scores&$Frequency\\---&--\\0-60&4\\61-70&10\\71-80& 12\\81-90&4\\91-10&5\\----&--\\$Total&35\end{array}\right|[/tex]
The relative frequency is calculated in the table below.
[tex]\left|\begin{array}{c|c|c}$Scores&$Frequency&$Relative Frequency\\---&--&-----\\0-60&4&\dfrac{4}{35}\times 100=11.43\% \\\\61-70&10&\dfrac{10}{35}\times 100=28.57\%\\\\71-80& 12&\dfrac{12}{35}\times 100=34.29\%\\\\81-90&4&\dfrac{4}{35}\times 100=11.43\%\\\\91-10&5&\dfrac{5}{35}\times 100=14.29\%\\----&--&---\\$Total&35&100\end{array}\right|[/tex]
Therefore, the relative frequency table is that in Option C.