Respuesta :
Answer:
2.47 ft
Explanation:
Given that:
The initial temperature of air = 80°F
Diameter of the pipe = 72 ft
average velocity [tex]v_{air}[/tex] of the air flow through the pipe = 34 ft/s
The objective is to determine the diameter of the pipe to be used to move water at:
At a temperature = 60°F &
An average velocity [tex]v_{water}[/tex] of 71 ft/s
Assuming Reynolds number similarity is enforced;
where :
kinematic viscosity (V_air) of air at 80 °F (V_air) = 1.69 × 10⁻⁴ ft²/s
kinematic viscosity of water at 60 °F (V_water) = 1.21 × 10⁻⁵ ft²/s
The diameter of the pipe can be calculated by using the expression:
[tex]D_{water} = \dfrac{V_{water}}{V_{air}}*\dfrac{v_{air}}{v_{water}}* D_{air}[/tex]
[tex]D_{water} = \dfrac{1.21*10^{-5} \ ft^2/s}{1.69*10^{-4} \ ft^2/s}*\dfrac{34 \ ft/s}{71 \ ft/s}* 72 \ ft[/tex]
[tex]D_{water} =[/tex] 2.4686 ft
[tex]D_{water} =[/tex] 2.47 ft ( to two decimal places)
Thus; diameter pipe to be use to move water at the given temperature and average velocity is 2.47 ft
Answer:
2.47 ft
Explanation:
Given that:
The initial temperature of air = 80°F
Diameter of the pipe = 72 ft
average velocity of the air flow through the pipe = 34 ft/s
The objective is to determine the diameter of the pipe to be used to move water at:
At a temperature = 60°F &
An average velocity of 71 ft/s
Assuming Reynolds number similarity is enforced;
where :
kinematic viscosity (V_air) of air at 80 °F (V_air) = 1.69 × 10⁻⁴ ft²/s
kinematic viscosity of water at 60 °F (V_water) = 1.21 × 10⁻⁵ ft²/s
The diameter of the pipe can be calculated by using the expression:
2.4686 ft
2.47 ft ( to two decimal places)
Thus; diameter pipe to be use to move water at the given temperature and average velocity is 2.47 ft