Answer:
a) P = 10.27 kW
b) Pmax = 10.65 kW
c) E = 5.47 MJ
Explanation:
Mass of the loaded car, m = 950 kg
Angle of inclination of the shaft, θ = 28°
Acceleration due to gravity, g = 9.8 m/s²
The speed of the car, v = 2.35 m/s
Change in time, t = 14.0 s
a) The power that must be provided by the winch motor when the car is moving at constant speed.
P = Fv
The force exerted by the motor, F = mg sinθ
P = mgv sinθ
P = 950 * 9.8 *2.35* sin28°
P = 10,271.3 W
P = 10.27 kW
b) Maximum power that the motor must provide:
[tex]P = mv\frac{dv}{dt} + mgvsin \theta\\dv/dt = \frac{2.35 - 0}{14} \\dv/dt = 0.168 m/s^2\\P = (950*2.35*0.168) + (950*9.8*2.35* sin28)\\P = 374.74 + 10271.3\\P = 10646.04 W\\10.65 kW[/tex]
c) Total energy transferred:
Length of the track, d = 1250 m
[tex]E = 0.5 mv^2 + mgd sin \theta\\E = (0.5 * 950 * 2.35^2) + (950 * 9.8 * 1250 * sin 28)\\E = 2623.19 + 5463475.31\\E = 5466098.50 J\\E = 5.47 MJ[/tex]