Respuesta :

Answer:

Option D

Step-by-step explanation:

We are given the following equations -

[tex]\begin{bmatrix}-5x-12y-43z=-136\\ -4x-14y-52z=-146\\ 21x+72y+267z=756\end{bmatrix}[/tex]

It would be best to solve this equation in matrix form. Write down the coefficients of each terms, and reduce to " row echelon form " -

[tex]\begin{bmatrix}-5&-12&-43&-136\\ -4&-14&-52&-146\\ 21&72&267&756\end{bmatrix}[/tex]  First, I swapped the first and third rows.

[tex]\begin{bmatrix}21&72&267&756\\ -4&-14&-52&-146\\ -5&-12&-43&-136\end{bmatrix}[/tex]  Leading coefficient of row 2 canceled.  

[tex]\begin{bmatrix}21&72&267&756\\ 0&-\frac{2}{7}&-\frac{8}{7}&-2\\ -5&-12&-43&-136\end{bmatrix}[/tex]  The start value of row 3 was canceled.

[tex]\begin{bmatrix}21&72&267&756\\ 0&-\frac{2}{7}&-\frac{8}{7}&-2\\ 0&\frac{36}{7}&\frac{144}{7}&44\end{bmatrix}[/tex]       Matrix rows 2 and 3 were swapped.

[tex]\begin{bmatrix}21&72&267&756\\ 0&\frac{36}{7}&\frac{144}{7}&44\\ 0&-\frac{2}{7}&-\frac{8}{7}&-2\end{bmatrix}[/tex]      Leading coefficient in row 3 was canceled.

[tex]\begin{bmatrix}21&72&267&756\\ 0&\frac{36}{7}&\frac{144}{7}&44\\ 0&0&0&\frac{4}{9}\end{bmatrix}[/tex]

And at this point, I came to the conclusion that this system of equations had no solutions, considering it reduced to this -

[tex]\begin{bmatrix}1&0&-1&0\\ 0&1&4&0\\ 0&0&0&1\end{bmatrix}[/tex]

The positioning of the zeros indicated that there was no solution!

Hope that helps!