If f(x) = squareroot x + 5 and g(x) = -4x + 4,
which statement is true?
Click on the correct answer.
3 is in the domain of fºg.
3 is not in the domain of fºg.

If fx squareroot x 5 and gx 4x 4 which statement is true Click on the correct answer 3 is in the domain of fºg 3 is not in the domain of fºg class=

Respuesta :

Answer:

3 is not in the domain of [tex]f\circ g[/tex].

Step-by-step explanation:

The given functions are

[tex]f(x)=\sqrt{x+5}[/tex]

[tex]g(x)=-4x+4[/tex]

We need to check whether 3 is in the domain of [tex]f\circ g[/tex] or not.

[tex]f\circ g=f(g(x))[/tex]

[tex]f\circ g=f(-4x+4)[/tex]     [tex][\because g(x)=-4x+4][/tex]

[tex]f\circ g=\sqrt{(-4x+4)+5}[/tex]     [tex][\because f(x)=\sqrt{x+5}][/tex]

[tex]f\circ g=\sqrt{-4x+9}[/tex]

This function is defined if

[tex]-4x+9\geq 0[/tex]

[tex]9\geq 4x[/tex]

[tex]\dfrac{9}{4}\geq x[/tex]

It means domain of the function [tex]f\circ g[/tex] is [tex](-\infty,\dfrac{9}{4}][/tex].

[tex]3\notin (-\infty,\dfrac{9}{4}][/tex]

Therefore, 3 is not in the domain of [tex]f\circ g[/tex].