Respuesta :
Answer:
b. 2 m
Explanation:
Given that:
the identical speakers are connected in phases ;
Let assume ; we have speaker A and speaker B which are = 3 meter apart
An observer stands at X = 4m in front of one speaker.
If the amplitudes are not changed, the sound he hears will be least intense if the wavelength is:
From above; the distance between speaker A and speaker B can be expressed as:
[tex]\sqrt{3^2 + 4^2 } \\ \\ = \sqrt{9+16 } \\ \\ = \sqrt{25} \\ \\ = 5 \ m[/tex]
The path length difference will now be:
= 5 m - 4 m
= 1 m
Since , we are to determine the least intense sound; the destructive interference for that path length will be half the wavelength; which is
= [tex]\dfrac{1}{2}*4 \ m[/tex]
= 2 m
The sound will be heard with least intensity if the wavelength is 2 m. Hence, option (b) is correct.
Given data:
The distance between the speakers is, d = 3 m.
The distance between the observer and speaker is, s = 4 m.
The amplitude of sound wave is the vertical distance from the base to peak of wave. Since sound amplitudes are not changed in the given problem. Then the distance between speaker A and speaker B can be expressed as:
[tex]=\sqrt{3^{2}+4^{2}}\\\\=\sqrt{25}\\\\=5\;\rm m[/tex]
And the path length difference is,
= 5 m - 4 m
= 1 m
Since , we are to determine the least intense sound; the destructive
interference for that path length will be half the wavelength; which is
[tex]=\dfrac{1}{2} \times s\\\\=\dfrac{1}{2} \times 4[/tex]
= 2 m
Thus, we can conclude that the sound will be heard with least intensity if the wavelength is 2 m.
Learn more about the interference here:
https://brainly.com/question/16098226