Respuesta :
Answer:
16, 18, 20
Step-by-step explanation:
We can estimate that the square of the middle integer will be about 1/3 of 980. Then the middle integer is about ...
√(980/3) ≈ 18.09
The integers are 16, 18, 20.
_____
Check
16^2 +18^2 +20^2 = 256 +324 +400 = 980
Answer:
16, 18, 20
Step-by-step explanation:
Let the three consecutive even integers be (x - 2), x, (x + 2)
[tex] \therefore \: {(x -2 )}^{2} + {x}^{2} + {(x + 2)}^{2} = 980 \\ \therefore \: {x}^{2} - 4x + 4 + {x}^{2} + {x}^{2} + 4x + 4 = 980 \\ \therefore \: 3{x}^{2} + 8 = 980 \\ \therefore \: 3{x}^{2} = 980 - 8 \\ \therefore \: 3{x}^{2} = 972 \\ \\ \therefore \: {x}^{2} = \frac{972}{3} \\ \\ \therefore \: {x}^{2} = 324 \\ \therefore \: x = \pm \sqrt{324} \\ \therefore \: x = \pm \: 18 \\ \because \: x \: is \: even \: integer \\ \therefore \: x \neq - 18 \\ \therefore \: x = 18 \\ \\ x - 2 = 18 - 2 = 16 \\ x = 18 \\ x + 2 = 18 + 2 = 20 \\ [/tex]
Hence, three consecutive even integers are : 16, 18, 20.