Given that ƒ(x) = –6x and g(x) = x + 4, multiply the functions (ƒ · g)(x). Question 19 options: A) (ƒ · g )(x) = –6x2 – 24x B) (ƒ · g )(x) = –6x2 + 24x C) (ƒ · g )(x) = –6x – 24x D) (ƒ · g )(x) = –6x + 24x

Respuesta :

Answer:

[tex] \boxed{\sf A) \ (f.g)(x) = = -6x^{2} - 24x} [/tex]

Given:

[tex]\sf f(x) = -6x \\ \\ \sf g(x) = x + 4[/tex]

To Find:

[tex] \sf (f.g)(x) = f(x) \times g(x)[/tex]

Step-by-step explanation:

[tex]\sf \implies f(x) \times g(x) = (-6x) \times (x + 4) \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = (-6x \times (x)) + (-6x \times 4) \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = -6x^{2} - 24x [/tex]

Answer:

A.

Step-by-step explanation: